ЭЛЕКТРОСТАТИКА

 

ЗАКОН КУЛОНА. ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ

Пример 1. Три одинаковых положительных заряда Q1=Q2=Q3=1 нКл расположены по вершинам равностороннего треугольника (рис. 13.1). Какой отрицательный заряд Q4 нужно поместить в центре треугольника, чтобы сила притяжения с его стороны уравновесила силы взаимного отталкивания зарядов, находящихся в вершинах?

Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым *?

Пример 3. Тонкий стержень длиной l=30 см (рис. 13.3) несет равномерно распределенный по длине заряд с линейной плотностью t=1 мкКл/м. На расстоянии r0=20 см от стержня находится заряд Q1=10 нКл, равноудаленный от концов, стержня. Определить силу F взаимодействия точечного заряда с заряженным стержнем.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ

Пример 1. Электрическое поле создано двумя точечными зарядами: Q1=30 нКл и Q2= –10 нКл. Расстояние d между зарядами равно 20 см. Определить напряженность электрического поля в точке, находящейся на расстоянии r1=15 см от первого и на расстоянии r2=10 см от второго зарядов.

Пример 2. Электрическое поле создано двумя параллельными бесконечными заряженными плоскостями с поверхностными плотностями заряда s1=0,4 мкКл/м2 и s2=0,1 мкКл/м2. Определить напряженность электрического поля, созданного этими заряженными плоскостями.

Пример 3. На пластинах плоского воздушного конденсатора находится заряд Q=10 нКл. Площадь S каждой пластины конденсатора равна 100 см2 Определить силу F, с которой притягиваются пластины. Поле между пластинами считать однородным.

Пример 4. Электрическое поле создано, бесконечной плоскостью, заряженной с поверхностной плотностью s=400 нКл/м2, и бесконечной прямой нитью, заряженной с линейной плотностью t=100 нКл/м. На расстоянии r=10 см от нити находится точечный заряд Q=10 нКл. Определить силу, действующую на заряд, ее направление, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.

Пример 5. Точечный заряд Q=25 нКл находится в ноле, созданном прямым бесконечным цилиндром радиусом R=1 см, равномерно заряженным с поверхностной плотностью s=2 мкКл/м2. Определить силу, действующую на заряд, помещенный от оси цилиндра на расстоянии r=10 см.

Пример 6. Электрическое поле создано тонкой бесконечно длинной нитью, равномерно заряженной с линейной плотностью t=30 нКл/м. На расстоянии а=20 см от нити находится плоская круглая площадка радиусом r=1 см. Определить поток вектора напряженности через эту площадку, если плоскость ее составляет угол b=30° с линией напряженности, проходящей через середину площадки.

Пример 7. Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r).

ПОТЕНЦИАЛ. ЭНЕРГИЯ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ. РАБОТА ПО ПЕРЕМЕЩЕНИЮ ЗАРЯДА В ПОЛЕ

Пример 1. Положительные заряды Q1=3 мкКл и Q2=20 нКл находятся в вакууме на расстоянии r1=l,5 м друг от друга. Определить работу A, которую надо совершить, чтобы сблизить заряды до расстояния r2=1 м.

Пример 2. Найти работу А поля по перемещению заряда Q=10 нКл из точки 1 в точку 2 (рис. 15.1), находящиеся между двумя разноименно заряженными с поверхностной плотностью s=0,4 мкКл/м2 бесконечными параллельными плоскостями, расстояние l между которыми равно 3 см.

Пример 3. По тонкой нити, изогнутой по дуге окружности радиусом R, равномерно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность Е и потенциал j электрического поля, создаваемого таким распределенным зарядом в точке О, совпадающей с центром кривизны дуги. Длина l нити составляет 1/3 длины окружности и равна 15 см.

Пример 4. Электрическое поле создана длинным цилиндром радиусом R=1 см, равномерно заряженным с линейной плотностью t=20 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстояниях a1=0,5 см и а2=2 см от поверхности цилиндра, в средней его части.

Пример 5. Электрическое поле создано тонким стержнем, несущим равномерно распределенный по длине заряд t=0,1 мкКл/м. Определить потенциал j поля в точке, удаленной от концов стержня на расстояние, равное длине стержня.

Пример 6. Электрон со скоростью v=1,83×106 м/с влетел в однородное электрическое поле в направлении, противоположном вектору напряженности поля. Какую разность потенциалов U должен пройти электрон, чтобы обладать энергией Ei=13,6 эВ*? (Обладая такой энергией, электрон при столкновении с атомом водорода может ионизировать его. Энергия 13,6 эВ называется энергией ионизации водорода.)

Пример 7. Определить начальную скорость υ0 сближения про­тонов, нахо­дя­щихся на достаточно большом расстоянии друг от друга, если минимальное расстояние rmin, на которое они могут сблизиться, равно 10-11 см.

 Пример 8. Электрон без на­чальной скорости прошел разность потен­циалов U0=10 кВ и влетел в пространство между пластинами плоского конденсатора, заряжен­ного до разности потенциалов Ul=100 В, по ли­нии АВ, парал­лельной пластинам (рис. 15.4). Рас­стояние d между пла­стинами равно 2 см. Длина l1 ­пластин конденсатора в нап­равлении по­лета элек­трона, равна 20 cм. Определить рас­стояние ВС на экране Р, от­стоящем от конденсатора на l2=1 м.

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ СВОЙСТВА ДИЭЛЕКТРИКОВ

 Пример 1. Диполь с электрическим моментом р=2 нКл·м находится в однородном электрическом поле напряженностью Е=30 кВ/м. Вектор р составляет угол α=60˚ с направлением си­ловых линий поля. Опреде­лить произведенную внешними силами работу А поворота диполя на угол β=30°.

Пример 2. Три точечных заряда Ql Q2 и Q3 образуют электрически нейтральную систему, причем Ql=Q2= 10 нКл. Заряды рас­положены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Еmах и потен­циала φmах поля, создаваемого этой системой зарядов, на расстоянии r= 1 м от центра треугольника, длина а стороны которого равна 10 см.

Пример 3. В атоме йода, находящемся на расстоянии r=1 нм от альфа-частицы, индуцирован электрический момент р= 1,5*10-32 Кл·м. Опре­делить поляризуемость α атома йода.

Пример 4. Криптон находится под давлением р=10 МПа при температуре Т= 200 К, Определить: 1) диэлектрическую проницаемость ε криптона; 2) его поляризованность Р, если напряженность Е0 внешнего электрического поля равна 1 MB/м. Поляризуемoсть α криптона равна 4,5·10-29 м3,

Пример 5. Жидкий бензол имеет плотность ρ=899 кг/м3 и по­казатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

ЭЛEКTPИЧECКAЯ EMКOCTЬ. КOHДEHCATOPЫ

Пример 1. Определить электрическую емкость С плоского кон­денсатора с двумя слоями диэлектриков: фарфора толщиной d1=2 мм и эбонита толщиной d2= 1,5 мм, если площадь S пластин равна 100 см2.

Пример 2. Два плоских конденсатора одинаковой электроемко­сти С12соединены в батарею последовательно и подключены источнику тока с электродвижущей силой ε. Как изменится разность потенциалов U1 на пластинах первого конденсатора, если пространство между пластинами второго конденсатора, не отключая источника тока, заполнить диэлектриком с диэлектрической проницаемостью ε =7?

ЭНЕРГИЯ ЗАРЯЖЕННОГО ПPOBOДHИКA. ЭHEPГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Пример 1. Конденсатор электроемкостью C1=З мкФ былзаря­жен до разности потенциалов U1=40 В. После отключения oт источника тока конденсатор был соединен параллельно с другим незаря­женным конденсатором электроемкостью С2=5 мкФ. Определить энергию ΔW, израсходованную на образование искры в момент присоединения второго конденсатора.

Пример 2. Плоский воздушный конденсатор с площадью S пла­стины, равной 500 см2, подключен к источнику тока, ЭДС которого равна 300 В. Определить работу А внешних сил по раз­движению пластин от расстояния d1 = 1 см до d2=3 см в двух слу­чаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенны­ми к нему.

Пример 3. Плоский конденсатор заряжен до разности потенциалов U= 1 кВ. Расстояние d между пластинами равно 1 см. ДИЭ;/1ект­рик - стекло. Определить объемную плотность энергии поля кон­денсатора.

  Пример 4. Металлический шар радиусом R=3 cм несет заряд Q=20 нКл. Шар окружен слоем парафина толщиной d=2см. Определить энергию W электрического поля, заключенного в слое ди­электрика

Решение задач по физике, электротехнике, математике