Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

 НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ

Основные формулы

· Напряженность электрического поля

E=F/Q,

где F — сила, действующая на точечный положительный заряд Q, помещенный в данную точку поля.

· Сила, действующая на точечный заряд Q, помещенный в электрическое поле,

F=QE.

· Поток вектора напряженности Е электрического поля:

а) через произвольную поверхность S, помещенную в неоднородное поле,

 или ,

где a — угол между вектором напряженности Е и нормалью n к элементу поверхности; dS — площадь элемента поверхности; En — проекция вектора напряженности на нормаль;

удаление тату

б) через плоскую поверхность, помещенную в однородное электрическое поле,

ФEScosa.

· Поток вектора напряженности Е через замкнутую поверхность

,

где интегрирование ведется по всей поверхности.

· Теорема Остроградского — Гаусса. Поток вектора напряженности Е через любую замкнутую поверхность, охватывающую заряды Ql, Q2, . . ., Qn,

,

где   — алгебраическая сумма зарядов, заключенных внутри замкнутой поверхности; п — число зарядов.

· Напряженность электрического поля, создаваемого точечным зарядом Q на расстоянии r от заряда,

.

Напряженность электрического поля, создаваемого металлической сферой радиусом R, несущей заряд Q, на расстоянии r от центра сферы:

а) внутри сферы (r<.R)

E=0;

б) на поверхности сферы (r=R)

;

в) вне сферы (r>R)

.

· Принцип суперпозиции (наложения) электрических полей, согласно которому напряженность Е результирующего поля, созданного двумя (и более) точечными зарядами, равна векторной (геометрической) сумме напряженностей складываемых полей:

Е=E1+Е2+...+Еn.

В случае двух электрических полей с напряженностями Е1 и Е2 модуль вектора напряженности

,

где a — угол между векторами E1 и E2.

· Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром) на расстоянии r от ее оси,

, где t — линейная плотность заряда.

Линейная плотность заряда есть величина, равная отношению заряда, распределенного по нити, к длине нити (цилиндра):

· Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью,

 

где s — поверхностная плотность заряда.

Поверхностная плотность заряда есть величина, равная отношению заряда, распределенного по поверхности, к площади этой поверхности:

.

· Напряженность поля, создаваемого двумя параллельными бесконечными равномерно и разноименно заряженными плоскостями, с одинаковой по модулю поверхностной плотностью о заряда (поле плоского конденсатора)

.

Приведенная формула справедлива для вычисления напряженности поля между пластинами плоского конденсатора (в средней части его) только в том случае, если расстояние между пластинами много меньше линейных размеров пластин конденсатора.

· Электрическое смещение D связано с напряженностью E электрического поля соотношением

D=e0eE.

Это соотношение справедливо только для изотропных диэлектриков.

· Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

а) в случае однородного поля поток сквозь плоскую поверхность

;

б) в случае неоднородного поля и произвольной поверхности

,

где Dn проекция вектора D на направление нормали к элементу поверхности, площадь которой равна dS.

· Теорема Остроградского — Гаусса. Поток вектора электрического смещения сквозь любую замкнутую поверхность, охватывающую заряды Q1,Q2, ...,Qn,

,

где п—число зарядов (со своим знаком), заключенных внутри замкнутой поверхности.

· Циркуляция вектора напряженности электрического поля есть величина, численно равная работе по перемещению единичного точечного положительного заряда вдоль замкнутого контура. Циркуляция выражается интегралом по замкнутому контуру , где Elпроекция вектора напряженности Е в данной точке контура на направление касательной к контуру в той же точке.

В случае электростатического поля циркуляция вектора напряженности равна нулю:

.

Решение задач по физике, электротехнике, математике