Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ

Пример 7. Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r).

Решение. Заметим, что точки, в которых требуется найти напряженности электрического поля, лежат в трех областях (рис. 14.7): область I (r<R1), область II (R1<r2<R2), область III (r3>R2).

1. Для определения напряженности E1 в области I проведем сферическую поверхность S1 радиусом r1 и воспользуемся теоремой Остроградского—Гаусса. Так как внутри области I зарядов нет, то согласно указанной теореме получим равенство

, (1)

где En — нормальная составляющая напряженности электрического поля.

Из соображений симметрии нормальная составляющая En должна быть равна самой напряженности и постоянна для всех точек сферы, т. е. En=E1=const. Поэтому ее можно вынести за знак интеграла. Равенство (1) примет вид

.

Так как площадь сферы не равна нулю, то

E1=0,

т. е. напряженность поля во всех точках, удовлетворяющих условию r1<.R1, будет равна нулю.

2. В области II сферическую поверхность проведем радиусом r2. Так как внутри этой поверхности находится, заряд Q1, то для нее, согласно теореме Остроградского—Гаусса, можно записать равенство

. (2)

Так как En=E2=const, то из условий симметрии следует

, или ES2=Q1/e0,

откуда

E2=Q1/(e0S2).

Подставив сюда выражение площади сферы, получим

E2=Q/(4). (3)

3. В области III сферическую поверхность проведем радиусом r3. Эта поверхность охватывает суммарный заряд Q1+Q2. Следовательно, для нее уравнение, записанное на основе теоремы Остроградского — Гаусса, будет иметь вид

.

Отсюда, использовав положения, примененные в первых двух случаях, найдем

. (4)

Убедимся в том, что правые части равенств (3) и (4) дают единицу напряженности электрического поля;

Выразим все величины в единицах СИ (Q1=10-9 Кл, Q2= –0,5´10-9 Кл, r1=0,09 м, r2=15 м, l/(4pe0)=9×109 м/Ф) и произведем вычисления:

4. Построим график E(r).В области I (r1<R1) напряженность E=0. В области II (R1r<.R2) напряженность E2(r) изменяется по закону l/r2. В точке r=R1 напряженность E2(R1)=Q1/(4pe0R)=2500 В/м.В точке r=R1 (r стремится к R1 слева) E2(R2)=Q1/(4pe0R)=900В/м. В области III (r>R2)E3(r) изменяется по закону 1/r2, причем в точке r=R2 (r стремится к R2 справа) Е3(R2)=(Q1–|Q2|)/(4pe0R)=450 В/м. Таким образом, функция Е(r) в точках r=R1 и r=R2 терпит разрыв. График зависимости Е(r) представлен на рис. 14.8.

Решение задач по физике, электротехнике, математике