Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

ПОТЕНЦИАЛ. ЭНЕРГИЯ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ

Пример 2. Найти работу А поля по перемещению заряда Q=10 нКл из точки 1 в точку 2 (рис. 15.1), находящиеся между двумя разноименно заряженными с поверхностной плотностью s=0,4 мкКл/м2 бесконечными параллельными плоскостями, расстояние l между которыми равно 3 см.

Решение. Возможны два способа решения задачи.

1-й способ. Работу сил поля по перемещению заряда Q из точки 1 поля с потенциалом j1 в точку 2 поля с потенциалом j2 найдем по формуле

A=Q(j1j2). (1)

Для определения потенциалов в точках 1 и 2 проведем через эти точки эквипотенциальные поверхности I и II. Эти поверхности будут плоскостями, так как поле между двумя равномерно заряженными бесконечными параллельными плоскостями однородно. Для такого поля справедливо соотношение

j1j2=El(2)

где Е — напряженность поля; l расстояние между эквипотенциальными поверхностями.

Напряженность поля между параллельными бесконечными разноименно заряженными плоскостями E=s/e0. Подставив это выражение Е в формулу (2) и затем выражение j1j2 в формулу (1), получим

A=Q(s/e0)l.

2-й способ. Так как поле однородно, то сила, действующая на заряд Q, при его перемещении постоянна. Поэтому работу перемещения заряда из точки 1 в точку 2 можно подсчитать по формуле

A=FDr cosa, (3)

где F сила, действующая на заряд; Dr — модуль перемещения заряда Q из точки 1 в точку 2; a — угол между направлениями перемещения и силы. Но F=QE=Q(s/e0). Подставив это выражение F в равенство (3), а также заметив, что Drcosa=l, получим

A=Q(s/e0)l. (4)

Таким образом, оба решения приводят к одному и тому же результату.

Подставив в выражение (4) значение величин Q, s, e0 и l, найдем

A=13,6 мкДж.

Решение задач по физике, электротехнике, математике