Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

ПОТЕНЦИАЛ. ЭНЕРГИЯ СИСТЕМЫ ЭЛЕКТРИЧЕСКИХ ЗАРЯДОВ

 

Пример 7. Определить начальную скорость υ0 сближения про­тонов, нахо­дя­щихся на достаточно большом расстоянии друг от друга, если минимальное расстояние rmin, на которое они могут сблизиться, равно 10-11 см.

Р е ш е н и е. Между двумя протонами действуют силы оттал­кивания, вслед­ствие чего движение протонов будет замедленным. Поэтому задачу можно ре­шить как в инерциальной системе коор­динат (связанной с центром масс двух протонов), так и в неинер­циальной (связанной с одним из ускоренно движу­щихся протонов). Во втором случае законы Ньютона не имеют места. Примене­ние же принципа Даламбера затруднительно из-за того, что ускорение системы будет переменным. Поэтому удобно рассмотреть задачу в инерциальной сис­теме отсчета.

Поместим начало координат в центр масс двух протонов. По­скольку мы имеем дело с одинаковыми частицами, то центр масс будет находиться в точке, делящей пополам отрезок, соединяющий частицы. Относительно центра масс частицы будут иметь в любой момент времени одинаковые по модулю скоро­сти. Когда частицы находятся на достаточно большом расстоянии друг от друга, скорость υ1 каждой частицы равна половине υ0, т. е. υ1 0/2.

Для решения задачи применим закон сохранения энергии, со­гласно кото­рому полная механическая энергия Е изолированной системы постоянна, т. е.

Е=Т+П,

где Т - сумма кинетических энергий обоих протонов относительно центра масс; П - потенциальная энергия системы зарядов.

Выразим потенциальную энергию в начальный П1 и конечный П2 моменты движения.

В начальный момент, согласно условию задачи, протоны нахо­дились на большом расстоянии, поэтому потенциальной энергией можно пренебречь (П1=0). Следовательно, для начального момента полная энергия будет равна кинетической энергии T1 протонов, т. е.

E=Tl(1)

В конечный момент, когда протоны максимально сблизятся, скорость и кинети­ческая энергия равны нулю, а полная энергия будет равна потенциальной энер­гии П2, т. е.

Е=П2(2)

Прирав­няв правые части равенств (1) и (2), получим

T12. (3)

Кинети­ческая энергия равна сумме кинетических энергий про­тонов:

 (4)

Потенциальная энергия системы двух зарядов Q1 и Q2, находя­щихся в вакууме, определяется по формуле , где r - расстоя­ние между зарядами. Воспользовавшись этой формулой, полу­чим

 (5)

С учетом равенств (4) и (5) формула (3) примет вид

 откуда

Выполнив вычисления по полученной формуле, найдем υ0=2,35 Мм/с.

Решение задач по физике, электротехнике, математике