Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

ЗАКОН КУЛОНА. ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ Примеры решения задач

 

Пример 2. Два заряда 9Q и -Q закреплены на расстоянии l=50 см друг от друга. Третий заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды. Определить положение заряда Q1, при котором он будет находиться в равновесии. При каком знаке заряда равновесие будет устойчивым *?

Решение. Заряд Q1 будет находиться в равновесии в том случае, если векторная сумма сил, действующих на него, будет равна нулю. Это значит, что на заряд Q1 должны действовать две силы, равные по модулю и противоположные по направлению. Рассмотрим, на каком из трех участков I, II, III (рис. 13.2) может быть выполнено это условие. Для определенности будем считать, что заряд Q1 —положительный **.

 

*Равновесие называется устойчивым, если при малом смещении заряда от положения равновесия возникают силы, возвращающие его в положение равновесия.

** Рекомендуется читателю самостоятельно выполнять решение задаче для отрицательного заряда.

 

На участке I (рис. 13.2, а) на заряд Q1 действуют две противоположно направленные силы: F1 и F2. Сила F1, действующая со стороны заряда 9Q, в любой точке этого участка будет больше, чем сила F2, действующая со стороны заряда -Q, так как больший (по модулю) заряд 9Q всегда находится ближе к заряду Q1, чем меньший заряд -Q. Поэтому равновесие на этом участке невозможно;

На участке II (рис. 13.2, б) обе силы F1 и F2 направлены в одну сторону — к заряду -Q. Следовательно, и на втором участке равновесие невозможно.

На участке III (рис. 13.2, б) силы F1 и F2 направление противоположные стороны, так же как и на участке I, но в отличие от него меньший (по модулю) заряд (—Q) всегда находится ближе к заряду Q1, чем больший заряд (9Q). Это значит, что можно найти такую точку на прямой, где силы F1 и F2 будут одинаковы по модулю, т. е.

|F1|=|-F2|. (1)

Пусть расстояние от меньшего заряда до заряда Q1 равно х, тогда расстояние от большего заряда будет l+х. Выражая в равенстве (1) F1 и F2 в соответствии с законом Кулона, получим

.

Сокращая на QQ1 и извлекая из обеих частей равенства квадратный корень, найдем l+x=±3x, откуда x1=+l/2 и x2=-l/4.

Корень x2 не удовлетворяет физическому условию задачи (в этой точке силы F1 и F2 хотя и равны по модулю, но направлены в одну сторону).

Определим знак заряда, при котором равновесие будет устойчивым. Рассмотрим смещение заряда Q1 в двух случаях: 1) заряд положителен; 2) заряд отрицателен.

1. Если заряд Q1 положителен, то при смещении его влево обе силы F1 и F2 возрастают, но F1 возрастает медленнее (заряд 9Q всегда находится дальше, чем –Q). Следовательно, F2 (по модулю) больше, чем F1, и на заряд Q1 будет действовать результирующая сила, направленная также влево. Под действием этой силы заряд Q1 удаляется от положения равновесия. То же происходит и при смещении заряда Q1 вправо. Сила F2 убывает быстрее, чем F1. Векторная сумма сил в этом случае направлена вправо. Заряд под действием этой силы также будет перемещаться вправо, т. е. удаляться от положения равновесия. Таким образом, в случае положительного заряда равновесие является неустойчивым.

2. Если заряд Q1 отрицателен, то его смещение влево вызовет увеличение сил F2 и F1, но сила F1 возрастает медленнее, чем F2, т.е. |F2|>|F1|. Результирующая сила будет направлена вправо. Под действием этой силы заряд Q1 возвращается к положению равновесия. При смещении Q1 вправо сила F2 убывает быстрее, чем F1, т. е. |F1|>|F2|. результирующая сила направлена влево и заряд Q1 опять будет возвращаться к положению равновесия. При отрицательном заряде равновесие является устойчивым. Величина самого заряда Q1 несущественна.

Отметим, что в электростатике устойчивое равновесие возможно только при определенных ограничениях. В нашем примере заряд Q1 может перемещаться только вдоль прямой, проходящей через заряды Q и –9Q. Если это ограничение снять, то устойчивого равновесия не будет. В системе зарядов, находящихся под действием одних только электростатических сил, устойчивое равновесие невозможно (теорема Ирншоу).

Решение задач по физике, электротехнике, математике