Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

ЭЛЕКТРИЧЕСКИЙ ДИПОЛЬ СВОЙСТВА ДИЭЛЕКТРИКОВ

Пример 5. Жидкий бензол имеет плотность ρ=899 кг/м3 и по­казатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

Р е ш е н и е. 1. Для определения электронной поляризуемости воспользуемся формулой Лоренц -Лорентца:

откуда

 (1)

В полученное выражение входит молярная масса М бензола. Най­дем ее. Так как химическая формула бензола C6H6, то относитель­ная молекулярная масса Мr=6·12+6·1=78. Следовательно, моляр­ная масса

M=78·10-3 кг/моль.

Подставим в формулу (1) числовые значения физических вели­чин и произведем вычисления:

м3 = 1,27*10-28 м3 .

2. Диэлектрическую проницаемость паров бензола найдем, воспользовавшись уравнением Клаузиуса - Mocoтти:

 (2)

где n - концентрация молекул бензола.

Заметим, что молекулы бензола неполярны и поэтому обладают только двумя типами поляризации: электронной и атомной, причем атомная поляризация мала и ею можно пренебречь, считая α≈αе. Кроме того, при нормальных условиях ε мало отличается от единицы и приближенно можно считать ε+2≈3. Учитывая эти соображения, формулу (2) можно упростить: ε-1≈αеn, откуда ε = 1+αеп.

При нормальных условиях концентрация n молекул известна и равна числу Лошмидта (пл=2,69·1019см-3). Выразим концентра­цию молекул бензола в СИ (n=2,69·1025 м-3) и произведем вычис­ления:

ε= 1 + 1,27·10-28 ·2,69·1025= 1,00342.

Решение задач по физике, электротехнике, математике