Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

ЭНЕРГИЯ ЗАРЯЖЕННОГО ПPOBOДHИКA. ЭHEPГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Пример 2. Плоский воздушный конденсатор с площадью S пла­стины, равной 500 см2, подключен к источнику тока, ЭДС которого равна 300 В. Определить работу А внешних сил по раз­движению пластин от расстояния d1 = 1 см до d2=3 см в двух слу­чаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенны­ми к нему.

Р е ш е н и е. l-й случай. Систему двух заряженных и отклю­ченных от источника тока пластин можно рассматривать как изоли­рованную систему, по отношению к которой справедлив закон сохранения энергии. В этом случае работа внешних сил равна измене­нию энергии системы:

A=ΔW=W2-W1, (1)

где W2 - энергия поля конденсатора в конечном состоянии (пласти­ны находятся на расстоянии d2); W1 - энергия поля в начальном состоянии (пластины находятся на расстоянии d1).

Энергию в данном случае удобно выразить через заряд Q на пластинах, так как заряд пластин, отключенных от источника при их раздвижении, не изменяется. Подставив в равенство (1) выраже­ния W2=Q2/ (2С2) и W1 =Q2/(2С1), полу­чим

 ИЛИ

Выразив в этой формуле за­ряд через ЭДС ε источника тока и начальную электроемкость С1 (Q=C1ε), най­дем

 (2)

Подставляя в формулу (2) выражения электроемкостей (C10S/d1 и C2= =ε0S/d2) плоского конденсатора, получим

ε2

После сокращения на ε0S формула примет вид

A=ε02(d2 -d1)/ 2d1 (3)

Произведя вычисления по формуле (3), найдем A= 3,98 мкДж.

2-й случай. Пластины остаются подключенными к источнику тока и система двух пластин уже не является изолированной (заряд с пластин при их раздвижении перемещается к клеммам батареи). Поэтому воспользоваться законом сохранения энергии в этом слу­чае нельзя.

Заметим, что при раздвижении пластин конденсатора: а) разность их потенциалов остается неизменной (U=ε);б) емкость бу­дет уменьшаться (С= ε0S/d.) Будут уменьшаться также заряд на пластинах (Q=CU) и напряженность электрического поля (Е = U/d). Так как величины Е и Q, необходимые для определения работы, изменяются, то работу следует вычислять путем интегрирования.

Напишем выражение для элементарной работы:

 

dA=QE1dx, (4)

где E1 - напряженность поля, создаваемого зарядом одной пласти­ны.

Выразим напряженность поля E1 и заряд Q через расстояние х между пластинами:

E1 = 1/2 Е = ε/2х и Q = Cε, или Q = ε0Sε/x.

Подставив эти выражения E1 и Q в равенство (4), получим

dA= ε2dx.

Проинтегрировав это равенство в пределах от d1 до d2, найдем выражение искомой работы:

εε2ε2.

После упрощений последняя формула примет вид

A=ε0S ε2(d2-d1)/(2d1d2)

Сделав вычисления по полученной формуле, найдем

 А=1.33 мкДж.

Решение задач по физике, электротехнике, математике