Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ЭЛЕКТРОСТАТИКА Примеры решения задач начало

ЗАКОН КУЛОНА. ВЗАИМОДЕЙСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ Примеры решения задач

 

Пример 3. Тонкий стержень длиной l=30 см (рис. 13.3) несет равномерно распределенный по длине заряд с линейной плотностью t=1 мкКл/м. На расстоянии r0=20 см от стержня находится заряд Q1=10 нКл, равноудаленный от концов, стержня. Определить силу F взаимодействия точечного заряда с заряженным стержнем.

 

 

 

 

Решение. Закон Кулона позволяет вычислить силу взаимодействия точечных зарядов. По условию задачи, один из зарядов не является точечным, а представляет собой заряд, равномерно распределенный по длине стержня. Однако если выделить на стержне дифференциально малый участок длиной dl, то находящийся на нем заряд dQ=tdl можно рассматривать как точечный и тогда по закону Кулона* сила взаимодействия между зарядами Q1 и dQ:

, (1)[an error occurred while processing this directive]

где r — расстояние от выделенного элемента до заряда Q1.

[an error occurred while processing this directive]

Из чертежа (рис. 13.3) следует, что  и , где

r0 — расстояние от заряда Q1 до стержня. Подставив эти выражения r к dl в формулу (1), получим

. (2)

Следует иметь в виду, что dF — вектор, поэтому, прежде чем интегрировать разложим его на две составляющие: dF1, перпендикулярную стержню, и dF2, параллельную ему.

Из рис. 13.3 видно, что dF1=dFcosa, dF2=dFsina. Подставляя значение dF из выражения (2) в эти формулы, найдем:

.

* Здесь и далее, если в условии задачи не указана среда, имеется в виду, что заряды находятся в вакууме (e=1).

Интегрируя эти выражения в пределах от –b до +b, получим

В силу симметрии расположения заряда Q1 относительно стержня интегрирования второго выражения дает нуль;

Таким образом, сила, действующая на заряд Q1,

. (3)

Из. рис. 13.3 следует, что . Подставив это выражение sinb в формулу (3), получим

. (4)

Произведем вычисления по формуле (4):

Решение задач по физике, электротехнике, математике