Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК начало

ОСНОВНЫЕЗАКОНЫ ПОСТОЯННОГО ТОКА

Пример 3. Источники тока с электродвижущими силами ε1 и ε2 включены в цепь, как показано на рис. 19.2. Определить силы токов, текущих в сопротивлениях R2 и R3, если ε1= 10 В и ε2=4 В, а R1=R4=20м и R2=R3=4 Ом. Сопротивлениями источников тока пренебречь.

Р е ш е н и е. Силы токов в разветвленной цепи определяют с помощью законов Кирхгофа. Чтобы найти четыре значения силы токов, следует составить четыре уравнения.

 

Указание. Перед составлением уравнений по закону Кирхгофа необхо­димо, во-первых, выбрать произвольно направления токов, текущих через сопротивления, указав их стрелками на чертеже, и, во-вторых, выбрать на­правление обхода контуров (последнее только для составления уравнений по второму закону Кирхгофа).

Выберем направления токов, как они показаны на рис. 19.2, и условимся обходить контуры по часовой стрелке.

Рассматриваемая в задаче схема имеет два узла: А и В. Но состав­лять уравнение по первому закону Кирхгофа следует только для одного узла, так как уравнение, составленное для второго узла, будет следствием первого уравнения.

При составлении уравнений по первому закону Кирхгофа необ­ходимо соблюдать правило знаков: ток, подходящий к узлу, входит в уравнение со знаком плюс; ток, отходящий от узла, - со знаком минус.

По первому закону Кирхгофа для узла В имеем

I1+I2+I3-I4=0.

Недостающие три уравнения получим по второму закону Кирхгофа. Число независимых уравнений, которые могут быть составле­ны по второму закону Кирхгофа, также меньше числа контуров (в нашем случае контуров шесть, а независимых уравнений три). Чтобы найти необходимое число независимых уравнений, следует придерживаться правила: выбирать контуры таким образом, чтобы в каждый новый контур входила хотя бы одна ветвь, не участвовав­шая ни в одном из ранее использованных контуров.

При составлении уравнений по второму закону Кирхгофа необ­ходимо соблюдать следующее правило знаков:

а) если ток по направлению совпадает с выбранным направлени­ем обхода контуров, то соответствующее произведение IR входит в уравнение со знаком плюс, в противном случае произведение IR входит в уравнение со знаком минус,

б) если ЭДС повышает потенциал в направлении обхода контура, т.е. если при обходе контура приходится идти от минуса к плюсу внутри источника, то соответствующая ЭДС входит в уравнение со знаком плюс, в противном случае - со знаком минус.

По второму закону Кирхгофа имеем соответственно для контуров AR1BR2A, AR1BR3A, AR3BR4A:

I1R1 - I2R21 - ε2  (1)

I1R1- I3R3= ε1   (2)

I3R3 + I4R4=0.  (3)

Подставив в равенства (1)-(3) значения сопротивлений и ЭДС, получим систему уравнений:

I1+I2+I3-I4=0,

2I1-4I2=6,

2I1-4I3=10,

4I3+2I4=0.

Поскольку нужно найти только два тока, то удобно воспользо­ваться методом определителей (детерминантов). С этой целью пере­пишем уравнения еще раз в следующем виде:

I1+I2+I3-I4=0,

2I1-4I2+0+0=6,

2I1+0-4I3+0=10,

0+0+4I3+2I4=0.

Искомые значения токов найдем из выражений

  I2=ΔI2 и I3=ΔI3,

где Δ - определитель системы уравнений; ΔI2 и ΔI3 - определители, полученные заменой соответствующих столбцов определителя А столбцами, составленными из свободных членов четырех вышеприведенных уравнений, находим

Отсюда получаем

I2=0; I3 = -1 А.

Знак минус у значения силы тока I3 свидетельствует о том, что при произвольном выборе направлений токов, указанных на рисунке, направление тока I3 было указано противоположно истинному. На самом деле ток I3 те­чет от узла В к узлу А.

Решение задач по физике, электротехнике, математике