Атом водорода Классическая теория теплоёмкости Дебаевская теория Решётка Браве Проводимость твёрдых тел Проводники, полупроводники и изоляторы Прикладная математика и физика Электромагнитное взаимодействие Первообразная функция Интегрирование Вычислить производную задачи

ЭЛЕКТРОМАГНЕТИЗМ - курс лекций начало

 

СИЛА, ДЕЙСТВУЮЩАЯ НА ЗАРЯД, ДВИЖУЩИЙСЯ В МАГНИТНОМ ПОЛЕ

Основные формулы

• Сила F, действующая на заряд Q, движущийся со скоростью v в магнитном поле с индукцией В (сила Лоренца), выражается фор­мулой

F=Q [v B] или F=|Q|uB sina,

где a— угол, образованный вектором скорости v движущейся ча­стицы и вектором В индукции магнитного поля.

 

Примеры решения задач

Пример 1. Электрон, пройдя ускоряющую разность потенциа­лов U=400 В, попал в однородное магнитное поле с индукцией B=1,5 мТл. Определить: 1) радиус R кривизны траектории; 2) ча­стоту п вращения электрона в магнитном поле. Вектор скорости электрона перпендикулярен линиям индукции.

Решение. 1. Радиус кривизны траектории электрона опре­делим, исходя из следующих соображений: на движущийся в маг­нитном поле электрон действует сила Лоренца F. (Действием силы тяжести можно пренебречь.) Вектор силы Лоренца перпендикуля­рен вектору скорости и, следовательно, по второму закону Ньютона, сообщает электрону нормальное ускорение аn : F=man. Подставив сюда выражения F и аn, получим

|e|uB sin a=mu2/R, (1) 

где е, u, т — заряд, скорость, масса электрона; В — индукция маг­нитного поля; Rрадиус кривизны траектории; a — угол между направлениями векторов скорости v и индукции В (в нашем случае v^B и a = 90°, sin a =l).

Из формулы (1) найдем

 (2)

Входящий в выражение (2) импульс mu выразим через кинетическую энергию Т электрона:

 (3) 

Но кинетическая энергия электрона, прошедшего ускоряющую разность потенциалов U, определяется равенством Т= |e|U. Подставив это выражение Т в формулу (3), получим

Тогда выражение (2) для радиуса кривизны приобретает вид

Убедимся в том, что правая часть этого равенства дает единицу длины (м):

После вычисления по формуле (4) найдем

R=45 мм.

2. Для определения частоты вращения воспользуемся формулой связывающей частоту со скоростью и радиусом кривизны траектории,

Подставив R из выражения (2) в эту формулу, получим

Произведя вычисления, найдем n=4,20 × 107 c-1 .

 

Решение задач по физике, электротехнике, математике