Атом водорода Классическая теория теплоёмкости Дебаевская теория Решётка Браве Проводимость твёрдых тел Проводники, полупроводники и изоляторы Прикладная математика и физика Электромагнитное взаимодействие Первообразная функция Интегрирование Вычислить производную задачи

ЭЛЕКТРОМАГНЕТИЗМ - курс лекций начало

МАГНИТНОЕ ПОЛЕ ПОСТОЯННОГО ТОКА .

 Пример 3. Определить магнитную индукцию В поля, создаваемо­го отрезком бесконечно длинного прямого провода, в точке, равно­удаленной от концов отрезка и находящейся на расстоянии r0=20 см от середины его (рис. 21.4). Сила тока I, текущего по про­воду, равна 30 А, длина l отрезка равна 60 см.

Решение. Для определения магнитной индукции поля, соз­даваемого отрезком провода, воспользуемся законом Био — Савара—

— Лапласа:

 (1)

 

Прежде чем интегрировать выражение (1), преобразуем его так, чтобы можно было интегрировать по углу a. Выразим длину элемента dl проводника через da. Согласно рис. 21.4, запишем

 

 

Подставим это выражение dl в формулу (1): Рис. 21.4 

 

 

Но r — величина переменная, зависящая от a и равная   Подставив r в предыдущую формулу, найдем

 (2)

Чтобы определить магнитную индукцию поля, создаваемого от­резком проводника, проинтегрируем выражение (2) в пределах от a1 до a2:

Заметим, что при симметричном расположении точки A относитель­но отрезка провода cos a2= – cos a1. С учетом этого формула (3) примет вид

 

Из рис. 21.4 следует

 Подставив выражение cos a1 в формулу (4), получим

Подставим числовые значения в формулу (5) и произведем вы­числения:

Решение задач по физике, электротехнике, математике