Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

Оптика Курс лекций начало

ДИФРАКЦИЯ СВЕТА

Примеры решения задач

Пример 3. На дифракционную решетку нормально к ее поверх­ности падает параллельный пучок света с длиной волны λ=0,5мкм. Помещенная вблизи решетки лин­за проецирует дифракционную картину на плоский экран, удаленный от линзы на L=l м. Расстоя­ние l между двумя максимумами интенсивности первого порядка, наблюдаемыми на экране, равно 20,2 см (рис. 31.3). Определить: 1) постоянную d дифракционной решетки; 2) число n штрихов на 1 см; 3) число максимумов, которое при этом дает дифракционная решетка; 4) максимальный угол φmах отклонения лучей, соот­ветствующих последнему дифракционному максимуму.

Решение 1. Постоянная d дифракционной решетки, длина волны λ и угол φ отклоне­ния лучей, соответствую­щий k-му дифракционному максимуму, связаны соот­ношением

dsin φ=kλ, (1)

где k — порядок спектра, или в случае монохрома­тического света порядок максимума.

В данном случае k=1, sin φ=tg φ (ввиду того, что l/2<<L), tgφ=(l/2)L (следует из рис. 31.3). С учетом последних трех равенств соотношение (1) примет вид

,

откуда постоянная решетки

d=2Lλ/l.

Подставляя данные, получим

d=4,95 мкм.

2. Число штрихов на 1 см найдем из формулы

п=1/d.

После подстановки числовых значений получим n=2,02-103 см-1.

3. Для определения числа максимумов, даваемых дифракцион­ной решеткой, вычислим сначала максимальное значение kmax исходя из того, что максимальный угол отклонения лучей решеткой не может превышать 90°.

Из формулы (1) запишем

. (2)

Подставляя сюда значения величин, получим

Kmax =9,9.

Число k обязательно должно быть целым. В то же время оно не может принять значение, равное 10, так как при этом значении sin φ должен быть больше единицы, что невозможно. Следователь­но, kmах=9.

Определим общее число максимумов дифракционной картины, полученной посредством дифракционной решетки. Влево и вправо от центрального максимума будет наблюдаться по одинаковому числу максимумов, равному kmах, т. е. всего 2kmах. Если учесть также центральный нулевой максимум, получим общее число мак­симумов

N=2kmax+l.

Подставляя значение kmах найдем

N=2*9+1=19.

4. Для определения максимального угла отклонения лучей, соответствующего последнему дифракционному максимуму, выра­зим из соотношения (2) синус этого угла:

sinφmax=kmaxλ/d.

Отсюда

φmax=arcsin(kmaxλ/d).

Подставив сюда значения величин λ, d, kmах и произведя вычис­ления, получим

φmах=65,4°.

Решение задач по физике, электротехнике, математике