ГЕОМЕТРИЧЕСКАЯ ОПТИКА
Пример 2. Оптическая система представляет собой тонкую плосковыпуклую стеклянную линзу, выпуклая поверхность которой посеребрена. Определить главное фокусное расстояние f такой системы, если радиус кривизны R сферической поверхности линзы равен 60 см.
Решение. Пусть на линзу падает параксиальный луч KL, параллельный главной оптической оси MN линзы (рис. 28.3). Так как луч KL перпендикулярен плоской поверхности линзы, то он проходит ее без преломления.
На сферическую посеребренную поверхность луч падает в точке L под углом ε1 и отражается от нее под углом ε1’=ε1. Отраженный луч падает на границу плоской поверхности линзы под углом 2ε1 и по выходе из линзы пересекает главную оптическую ось в точке F, образуя с осью угол ε2. Длина полученного при этом отрезка FP и равна искомому фокусному расстоянию рассматриваемой оптической системы.
Если учесть, что в силу параксиальности луча KL углы ε1 и ε2 малы, а их синусы и тангенсы практически равны самим углам, выраженным в радианах, то из рис. 28.3 следует
.
Входящее в формулу (1) отношение ε1/ε2 углов найдем, пользуясь законом преломления света, который в нашем случае записываете;
в виде 2ε1/ε2==l/n, откуда
ε1/ε2=l/(2n).
Подставив это отношение углов в формулу (1), найдем
f=R/(2n).
Такой же результат можно получить и из формальных соображений. Так как луч K.L последовательно проходит линзу, отражается от вогнутого зеркала и еще раз проходит линзу, то данную оптическую систему можно рассматривать как центрированную систему, состоящую из сложенных вплотную двух плосковыпуклых линз и сферического зеркала. Фокусное расстояние оптической системы может быть найдено по формуле
f=1/Ф,
где Ф — оптическая сила системы.
Как известно, оптическая сила системы равна алгебраической сумме оптических сил отдельных компонентов системы. В нашем случае
Ф=,т.
е.
f=1/Ф=R/(2n),
что совпадает с результатом, выраженным формулой (2).
Решение задач по физике, электротехнике, математике