Квантооптические явления

Колебания
Свободные незатухающие
колебания
Затухание свободных
колебаний
Вынужденные колебания
Сложение колебаний
Электpостатика
Электpический заpяд
Закон Кулона
Потенциал
Пpоводники в
электpостатическом поле
Диэлектpики в электpическом
поле
Поток вектоpа напpяженности
Теоpема Гаусса
Электpическая емкость
Основные законы постоянного
тока
Энеpгия электpического поля
Машиностроительное черчение
Физика атомного ядра
Электротехнические материалы
Электромагнетизм
Электромагнитное
взаимодействие
Квантооптические явления
Оптика
Волновая оптика
Электромагнитные волн
Принцип суперпозиции волн
Принцип Гюгенса
Интерференция света
Дифракция света
Опыт Майкельсона.
Теория аберрации Стокса
Интерференция
поляризованных лучей.
Физические основы механики
Молекулярная физика
и термодинамика
Молекулярно-кинетическая
теория
Математика Задачи
Комплексные числа
Дифференциальное и
интегральное исчисление
Интегралы
Основные задачи на прямую
и плоскость
Векторная алгебра
Исследование функции
и построение графика
Производная функции
Свойства комплексных чисел
Локальная сеть

 

ЗАКОНЫ ТЕПЛОВОГО ИЗЛУЧЕНИЯ

Пример 1. Исследование спектра излучения Солнца показы­вает, что максимум спектральной плотности энергетической све­тимости соответствует длине волны λ=500 нм Принимая Солнце за черное тело, определить

1) энергетическую светимость Me Солнца;

2) поток энергии Фе, излучаемый Солнцем; 3) массу т электромаг­нитных волн (всех длин), излучаемых Солнцем за 1 с.

Пример 2. Длина волны λm , на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58 мкм. Опре­делить максимальную спектральную плотность энергетической светимости (Mλ,T)max , рассчитанную на интервал длин волн ∆λ=1нм, вблизи λm.

ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

Пример 1. Определить максимальную скорость vmax фотоэлект­ронов, вырываемых с поверхности серебра: 1) ультрафиолетовым излучением с длиной волны λ1 =0,155 мкм; 2) γ-излучением с длиной волны λ2=2,47 пм.

Пример 2 Определить красную границу λ0 фотоэффекта для цезия, если при облучении его поверхности фиолетовым светом длиной волны λ=400 нм максимальная скорость vmax фотоэлектро­нов равна 0,65 Мм/с.

ДАВЛЕНИЕ СВЕТА. ФОТОНЫ.

Пример 1. Пучок монохроматического света с длиной волны λ = 663 нм падает нормально на зеркальную плоскую поверхность Поток энергии Фе=0,6 Вт. Определить силу F давления, испытывае­мую этой поверхностью, а также число N фотонов, падающих на нее за время t=5 с

Пример 2. Параллельный пучок света длиной волны λ=500 нм падает нормально на зачерненную поверхность, производя давление p=10 мкПа. Определить: 1) концентрацию п фотонов в пучке, 2) число n1 фотонов, падающих на поверхность площадью 1 м2 за вре­мя 1 с.

ЭФФЕКТ КОМПТОНА.

Пример 1 В результате эффекта Комптона фотон при соударе­нии с электроном был рассеян на угол θ=90°. Энергия ε' рассеянного фотона равна 0,4 МэВ. Определить энергию ε фотона до рассеяния.

Пример 2. Фотон с энергией ε =0,75 МэВ рассеялся на свобод­ном электроне под углом θ=60°. Принимая, что кинетическая энер­гия и импульс электрона до соударения с фотоном были пренебре­жимо малы, определить: 1) энергию ε' рассеянного фотона; 2) кинетическую энергию Т электрона отдачи; 3) направление его движения.

ATOM ВОДОРОДА ПО ТЕОРИИ БОРА

Пример1 Вычислить радиус первой орбиты атома водорода (Боровский радиус) и скорость электрона на этой орбите.

Пример 2 Определить энергию ε фотона, соответствующего вто­рой линии в первой инфракрасной серии (серии Пашена) атома водорода.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Пример 1. Определить длину волны λ  и энергию ε   фотона Kα-линии рентгеновского спектра, излучаемого вольфрамом при бомбардировке его быстрыми электронами.

Пример 2. Определить напряжение U, под которым работает рентгеновская трубка, если коротковолновая граница λmin в спектре тормозного рентгеновского излучения оказалась равной 15,5 пм.

Решение задач по физике, электротехнике, математике