Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

Собственные значения и собственные векторы линейного преобразования

 

Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

 

Запишем линейное преобразование в виде:

Составим характеристическое уравнение:

l2 - 8l + 7 = 0;

Корни характеристического уравнения: l1 = 7; l2 = 1;

  Для корня l1 = 7:

Из системы получается зависимость: x1 – 2x2 = 0. Собственные векторы для первого корня характеристического уравнения имеют координаты: (t; 0,5t) где t- параметр.

 

  Для корня l2 = 1:

Из системы получается зависимость: x1 + x2 = 0. Собственные векторы для второго корня характеристического уравнения имеют координаты: (t; -t) где t- параметр.

 

  Полученные собственные векторы можно записать в виде:

Занимательную математику второй половины XX в. нельзя представить без целой серии замечательных книг, принадлежащих перу знаменитого американского популяризатора математики Мартина Гарднера. Именно его разнообразнейшие математические эссе, гармонично сочетающие научную глубину и способность развлекать, приобщили миллионы людей по всему миру к точным наукам и, конечно, к занимательной математике.

Решение задач по физике, электротехнике, математике