Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

Собственные значения и собственные векторы линейного преобразования

 

Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .

  Составим характеристическое уравнение:

 

 

 

(1 - l)((5 - l)(1 - l) - 1) - (1 - l - 3) + 3(1 - 15 + 3l) = 0

(1 - l)(5 - 5l - l + l2 - 1) + 2 + l - 42 + 9l = 0

(1 - l)(4 - 6l + l2) + 10l - 40 = 0

4 - 6l + l2 - 4l + 6l2 - l3 + 10l - 40 = 0

-l3 + 7l2 – 36 = 0

-l3 + 9l2 - 2l2 – 36 = 0

-l2(l + 2) + 9(l2 – 4) = 0

(l + 2)(-l2 + 9l - 18) = 0

 

Собственные значения: l1 = -2; l2 = 3; l3 = 6;

 

1) Для l1 = -2: 

 

Если принять х1 = 1, то Þ х2 = 0; x3 = -1;

 

Собственные векторы: 

 

2) Для l2 = 3: 

 

Если принять х1 = 1, то Þ х2 = -1; x3 = 1;

 

Собственные векторы: 

 

3) Для l3 = 6: 

 

Если принять х1 = 1, то Þ х2 = 2; x3 = 1;

 

Собственные векторы: 

Пример. Найти характеристические числа и собственные векторы линейного преобразования А, матрица линейного преобразования А = .

 

  Составим характеристическое уравнение:

 

 

-(3 + l)((1 - l)(2 - l) – 2) + 2(4 - 2l - 2) - 4(2 - 1 + l) = 0

-(3 + l)(2 - l - 2l + l2 - 2) + 2(2 - 2l) - 4(1 + l) = 0

-(3 + l)(l2 - 3l) + 4 - 4l - 4 - 4l = 0

-3l2 + 9l - l3 + 3l2 - 8l = 0

-l3 + l = 0

l1 = 0; l2 = 1; l3 = -1;

 

  Для l1 = 0: 

 

Если принять х3 = 1, получаем х1 = 0, х2 = -2

Собственные векторы ×t, где t – параметр.

Занимательную математику второй половины XX в. нельзя представить без целой серии замечательных книг, принадлежащих перу знаменитого американского популяризатора математики Мартина Гарднера. Именно его разнообразнейшие математические эссе, гармонично сочетающие научную глубину и способность развлекать, приобщили миллионы людей по всему миру к точным наукам и, конечно, к занимательной математике.

Решение задач по физике, электротехнике, математике