Производная функции

Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Производная

Пусть $ f(x)=\vert x\vert$ и $ x_0=0$. Вычислим односторонние производные $ f'_+(0)$ и $ f'_-(0)$

Рассмотрим линейную функцию $ y=f(x)=kx+b$

Производные некоторых элементарных функций

Найдём производную функции $\displaystyle f(x)=\left\{\begin{array}{ll}
x^2\sin\dfrac{1}{x},&\mbox{ при }x\ne0;\\
0,&\mbox{ при }x=0.
\end{array}\right.
$

Найдём производную функции $ f(x)=\mathop{\rm arctg}\nolimits x$.

Найдём производную функции $ f(x)=a^x$ ($ a>0,\ a\ne1$).

 

Найдём производную функции $ {f(x){=}\arcsin x}$

Найдём производную гиперболического котангенса $ \mathop{\rm cth}\nolimits x=\dfrac{\mathop{\rm ch}\nolimits x}{\mathop{\rm sh}\nolimits x}$

Найдём производную функции $\displaystyle f(x)=\mathop{\rm arctg}\nolimits \dfrac{1}{x},$ при $\displaystyle x\ne0.$

Аналогично находится производная гиперболического косинуса $ {y=\mathop{\rm ch}\nolimits x=
\frac{1}{2}(e^x+e^{-x})}$

Производная композиции

Пусть $ y=\sin2x$, то есть $ y=\sin u$, где $ u=2x$: данная функция представлена в виде композиции функций $ \sin u$ и $ 2x$.

Найдём производную функции $ y=\cos^52x$.

Решение квадратных уравнений с вещественными коэффициентами

Решите уравнение $ {x^2+2x+5=0}$ .

Символ суммирования

Сводка основных результатов о производных

Производные высших порядков

Рассмотрим функцию $ y=f(x)=\sin x$.

Найдём вторую производную функции $ f(x)=\sin^3x$

Производные функции, заданной параметрически

Пусть зависимость между $ x$ и $ y$ задана параметрически следующими формулами: $\displaystyle x=\ln(1+t^2); y=\mathop{\rm arctg}\nolimits t.$

Найдём выражение для второй производной $ y''_{xx}$ через параметр $ t$.

Найдём вторую производную $ y''_{xx}$ функции, заданной параметрически:

Производная функции, заданной неявно

Возьмём то же уравнение $ e^{xy}+x\cos y=0$ и найдём производную левой части

Производные и дифференциалы

Найдём производную функции

$ y=\cos(2x+dfrac{\pi}{4})$

$ y=\sin^2\ln^3(x^2+4)$

$ y=x^2e^{-2x}$

$ y=\sin^2\ln^3(x^2+4)$

Зависимость между $ x$ и $ y$ задана формулой $\displaystyle x^3y+xy^2+y^3-3x+5y+3=0.$

Найдём производную функции $ y=\cos(2x+dfrac{\pi}{4})$.

Четыре теоремы о дифференцируемых функциях

Функция $ f(x)=x^2$ имеет на отрезке $ [-1;1]$ точку минимума $ x_0=0$

Функция $ f(x)=\vert x\vert$ имеет на отрезке $ [-1;1]$ точку минимума $ x_0=0$

 

Рассмотрим при $ x\to\infty$ две бесконечно больших: $ f(x)=x+\sin x$ и $ g(x)=x$

Найдём предел $ \lim\limits_{x\to0}\dfrac{\sin x-x}{x^3}$.

Бесконечно малые и локально ограниченные величины и их свойства

При базе $ x\to+\infty$ рассмотрим две бесконечно малых величины: $ {\alpha}(x)=\dfrac{1}{x}$ и $ {\beta}(x)=\dfrac{1}{x^2}$

пример

 

 

Решение задач по физике, электротехнике, математике