Атом водорода Классическая теория теплоёмкости Дебаевская теория Решётка Браве Проводимость твёрдых тел Проводники, полупроводники и изоляторы Прикладная математика и физика Электромагнитное взаимодействие Первообразная функция Интегрирование Вычислить производную задачи

Лекции по курсу Электротехнические материалыначало

Электрические свойства магнитных материалов

Удельное электрическое сопротивлениеметаллических магнитных материалов зависит от состава и направления намагниченности по отношению к направлению движения электронов проводимости. Электрические свойства технических Fe, Co, Ni показаны в таблице.

материал , мкОм.мтемпературный коэффициент электрического сопротивления, , 10-3 К-1
Fe0.097 (20 oС)6.2
Co0.32 (500 oС)13.8 (500 oС)
Ni0.068(0-100 oС)6.7

[Структура кобальта]

В чистых монокристаллических образцах металлов наблюдается значительная анизотропия электросопротивления. Так, в монокристаллах кобальта в направлении оси С с=0.103 мкОм . м, а в плоскости, перпендикулярной этой оси р=0.055 мкОм . м (см. рисунок). Износостойкость материалов Износостойкостью называют способность материалов противодействовать комплексному действию различных факторов в процессах хранения, технологической обработки и эксплуатации в изделиях.

В ферритах по сравнению с металлическими ферромагнетиками удельное электрическое сопротивление много выше, сопоставимо с полупроводников и может меняться в широких пределах в зависимости от состава, типа элементов структуры, вида примесей. Так, для феррита иттрия удельное сопротивление 1010-1012 Ом . м, для феррита никеля 103-105 Ом . м, для феррита лития 1-10 Ом . м. Энергия активации проводимости ферритов находится в пределах 0.2-2 эВ. В ферритах часто наблюдается поляронная (прыжковая) проводимость, обусловленная перескоком локализованных электронов из одного состояния в другое. Поляроны - квазичастицы, образованные локализованными на ионах электронами вместе с окружающим их полем поляризации. В случае поляронов малого радиуса энергия ионизации примесного центра 0.2-0.6 эВ.

Классификация магнитных материалов

Магнитомягкие материалы способны намагничиваться до насыщения в слабых полях, обладают высокой магнитной проницаемостью и малыми потерями на перемагничивание. Условно к магнитомягким относят материалы с Нс>800 А/м. Применяются в основном в качестве магнитопроводов дросселей, трансформаторов, электромагнитов, электрических машин и т.д.

Магнитотвердые материалы отличаются большой удельной энергией, которые тем больше, чем чем больше остаточная индукция Br и коэрцитивная сила Нс материала. К магнитотвердым относят материалы с Нс>4 кА/м. Используются главным образом для постоянных магнитов.

Намагничивание магнитомягких материалов происходит в основном за счет смещения междоменных границ, а в магнитотвердых - за счет вращения вектора намагниченности (в магнитотвердых материалах на основе редкоземельных элементов преобладают процессы смещения).

Магнитотвердые материалы. Основные параметры.

Для характеристики магнитотвердых материалов обычно используют ту часть кривой гистерезиса, которая лежит во втором квадранте, а в первом изображают изменение удельной магнитной энергии от индукции, как показано на рисунке. Магнитная энергия в воздушном зазоре постоянного магнита будет максимальна при некоторых значениях Нд и Вд (см. рисунок). Условие

W=(Bд . Hд)/2=Wmax, Дж/м3

определяет наилучшее использование магнита и является важнейшим параметром, характеризующим качество материала. Множитель 1/2 иногда опускается. Коэффициент выпуклости

=(В.Н)max/(Вr.Нc)

характеризует форму кривой размагничивания - степень прямоугольности. Для магнитотвердых материалов, используемых в различных областях современной техники Нс=5 .103-5 .106 А/м, (ВН/2)max=0.5-200кДж/м3, (ВН/2)max=1-400кДж/м3.

[Зависимость W(B)]

Магнитомягкие материалы. Технически чистое железо

Технически чистое железо (низкоуглеродистая электротехническая сталь) содержит менее 0.05% углерода и минимальное количество примесей других элементов. Получается прямым восстановлением чистых руд, а также с применением электролитического или карбонильного процессов.

Низкоуглеродистая электротехническая сталь (другое название "армко-железо") обладает высокими значениями магнитной проницаемости и индукции насыщения, низкой коэрцитивной силой. Однако из-за малого удельного электрического сопротивления имеет повышенные потери на вихревые токи и применяется поэтому только в устройствах постоянного тока - полюсных наконечниках электромагнитов, магнитопроводах реле, экранирующих корпусах и др.; является основным компонентом при изготовлении многих магнитных материалов. Промышленностью выпускается также в виде электролитического и карбонильного железа; последнее получается в виде листов и готовых изделий из порошка путем конденсации газообразного пентакарбонила железа FeCo5. В таблице отражены основные магнитные характеристики железа.

 

Материал[Mu]Hc, А/мBs, Тл[Ro], мкОм.м
НачальнаяМаксимальная
Технически чистое железо250-4003500-450050-1002.180.1
Электролитическое железо60015000302.180.1
Карбонильное железо2000-300020000-215006.42.180.1

На магнитные свойства железа влияют:

Магнитные свойства железа улучшаются:

Внутренние напряжения в деталях снимаются отжигом.

Электротехнические стали

Электротехнические стали - сплавы железа с 0.5-5% кремния, которые образуют с железом твердый раствор.

Кремний переводит углерод из формы цементита в графит, действует как раскислитель, связывая вредные газы, прежде всего кислород; способствует росту зерен, уменьшению констант магнитной анизотропии и магнитострикции; увеличивает удельное сопротивление, то есть уменьшает потери на вихревые токи. При содержании Si>5% ухудшаются механические свойства, повышаются твердость, хрупкость. Основные вредные примеси: углерод, сера, кислород, марганец.

Свойства стали существенно улучшаются при создании магнитной текстуры, создаваемой холодной прокаткой и отжигом, при этом потери уменьшаются приблизительно в два раза.

 

[Ребровая текстура стали]

При ребровой текстуре наилучшие магнитные свойства получаются в направлении прокатки, наихудшие - под углом 55о к направлению прокатки.

[Кубическая текстура стали]

При кубической текстуре наилучшие магнитные свойства обеспечиваются в направлении всех ребер куба элементарных ячеек.

В обозначении марок электротехнических сталей используются четыре цифры, обозначающие: первая - структурное состояние и вид прокатки: 1 - горячекатанная изотропная; 2- холоднокатанная изотропная; 3 - холоднокатанная анизотропная с ребровой текстурой; вторая - содержание кремния в весовых процентах - классы 0, 1, 2, 3, 4, 5 с содержанием кремния от 0.4% для класса 0 до 3.8-4.8% для класса 5; третья, четвертая - гарантированные удельные потери и магнитная индукция.

В таблице приведены характеристики различных типов электротехнических сталей с толщиной листа 0.35 мм, применяемых в энергетическом машиностроении. Для рассматриваемых сталей большое значение имеют удельные потери.

[Типы электротехнических сталей]

Для оценки характеристик электротехнических сталей в сопоставлении с другими магнитными материалами приведены их удельные значения: нач=200-600; макс=3000-8000; Нс=10-65 А/м; Вs=1.95-2.02 Тл; =0.25-0.6 мкОм .м. Электротехнические стали с высоким содержанием следует применять, если требуются малые потери на гистерезис и вихревые токи и высокая проницаемость в слабых и средних полях. Холоднокатанные текстурированные стали имеют более высокую магнитную проницаемость в области слабых полей и более низкие удельные потери по сравнению с горячекатанными сталями. После резки, штамповки и других операций с электротехнической сталью, вызывающих появление налета, ухудшающего магнитные свойства, необходим отжиг в неокислительной среде при температуре 750-800 oС.

Пермаллои

Пермаллои - железоникелевые сплавы с высокой проницаемостью в слабых полях. По составу выделяют низконикелевые (40-50% Ni) и высоконикелевые (72-80 %Ni)). Такое подразделение обусловлено смещением магнитных и электрических характеристик в зависимости от процентного содержания никеля. Из диаграммы видно, что нач имеет два максимума: относительный (1) и абсолютный (2): 1 - область с содержанием никеля 40-50% соответствует низконикелевому пермаллою; 2 - область с содержанием 72-80% - высоконикелевому, обладающими и наибольшими значениями макс.

Из характеристик следует, что у низконикелевого пермаллоя значительно выше (примерно в два раза), чем у высоконикелевого пермаллоя. Это приводит к разграничению области применения низконикелевых и высоконикелевых пермаллоев.

 

[Свойства пермаллоев]

Обе группы пермаллоев для улучшения электромагнитных свойств легируются различными элементами, например молибденом, хромом, медью и некоторыми другими элементами. Плавка осуществляется в вакууме или нейтральных газах. Тонкие листы и ленты выпускаются или штампуются холоднокатанными с последующим высокотемпературным отжигом для получения высоких магнитных свойств. Поверхность ленты для навивки (при изготовлении тороидальных сердечников) и последующего отжига покрывается тонким слоем окислов кремния, магния или алюминия способом катафореза или осаждением из суспензии, жидкой фазой которой является легко испаряющаяся жидкость, например ацетон. В процессе сборки и эксплуатации сердечников из пермаллоя не допустимы механические напряжения (удары, рихтование, сдавливание обмоткой и другие) из-за ухудшения магнитных характеристик.

Высокие магнитные свойства пермаллоев, их способность легко намагничиваться объясняют близостью к нулю констант кристаллографической анизотропии и намагниченности насыщения, но это же приводит и к большей чувствительности магнитных свойств от внешних напряжений. По основным магнитным свойствам выделяются несколько групп пермаллоев. Посмотрите свойства нелегированного высоконикелевого и низконикелевого пермаллоев.

Основные свойства некоторых наиболее распространенных марок пермаллоев приведены в следующей таблице. Цифра в обозначении марки указывает процентное содержание никеля. [Свойства пермаллоев]

[Свойства нелегир. пермаллоев]

Сплавы с наибольшей макс и нач рекомендуются для сердечников малогабаритных трансформаторов, реле и магнитных экранов при их толщинах менее 0.02 мм - для сердечников импульсных трансформаторов, магнитных усилителей и реле.

Сплавы с повышенным удельным сопротивлением реализуют для сердечников импульсных трансформаторов и аппаратуры звуковых и высоких частот, работающих без перемагничивания.

С увеличением частоты следует применять более низконикелевые пермаллои тонкого проката.

Альсиферы - сплавы Al-Si-Fe, оптимальный состав (9.6% Si, 5.4% Al) имеет следующие свойства: нач=35400; макс=117000; Нс=1.76 А/м. Это нековкий, с высокой твердостью хрупкий материал (легко размалывается в порошки).

Область применения - магнитные экраны, корпуса приборов и аппаратов, фасонные детали магнитопроводов и другие изделия, работающие в постоянных магнитных полях. Из-за хрупкости толщина стенок должна быть не менее 1-2 мм. Тонкие порошки альсифера применяются в качестве ферромагнитной составляющей магнитодиэлектриков.

Магнитомягкие ферриты - химические соединения окисла железа Fe2O3 с окислами других металлов. Наиболее широко применяются ферриты со структурой шпинели, отвечающими формуле MeFe2O4, где Me - какой-либо двухвалентный катион.

Самопроизвольная намагниченность ферритов обусловлена спиновыми магнитными моментами трехвалентных ионов железа и двухвалентных ионов металла, между которыми существует косвенное обменное взаимодействие через ионы кислорода. Синтез ферритов производится по керамической технологии и может быть осуществлен по трем различным технологическим схемам: 1 - из механической смеси оксидов или карбонатов; 2 - термическим разложением твердой смеси солей, полученной выпариванием из водного раствора; 3 - из совместно сочетаемых гидроксидов, карбонатов, оксилатов.

Наиболее распространенный - первый способ.

Магнитомягкие ферриты применяются:

- для магнитопроводов, работающих в слабых, сильных магнитных полях до 100 МГц и в импульсном режиме;

- для изготовления магнитных усилителей, сердечников трансформаторов, катушек индуктивности, статоров и роторов высокочастотных двигателей, термомагнитных компенсаторов и так далее.

Механические свойства как и у керамики - твердость, хрупкость, недопустимость обработки резанием. При спекании - усадка от 10 до 20%. Хорошо шлифуются и полируются абразивными материалами, режутся алмазным инструментом.

Наиболее широко в качестве магнитомягких ферритов применяют никель-цинковые и марганец-цинковые ферриты, представляющие собой твердые растворы замещения, образованные простыми ферритами NiFe2O4 и MnFe2O4, являющиеся ферромагнетиками, с немагнитным ZnFe2O4.

В переменных полях для оценки допустимого частотного диапазона ферриты кроме характеризуются tgб- тангенсом угла магнитных потерь. Для ферритов потерями на вихревые токи и гистерезис в области слабых полей можно пренебречь.

При повышении частоты, начиная с некоторой, характерной для данной марки феррита значения, tgб возрастает более резко, при этом уменьшается . Эту частоту называют критической fкр. Частоту, при которой нач уменьшается до 0.7 от ее значения f=0 называют граничной - fгр.

Причина уменьшения и роста tgб связывается со сложными резонансными и релаксационными процессами. Зависимости и tgб от частоты в логарифмическом масштабе для разных марок никель-цинкового феррита показана на рисунке. Цифра в обозначении марки феррита означает величину начальной магнитной проницаемости нач.

[]

Магнитные и электрические свойства трех марок никель-цинковых ферритов приведены в таблице.

ферритов в зависимости от химического состава и термической обработки изменяется от 10 до 108 Ом . м. Основной недостаток ферритов по сравнению с металлическими магнитными материалами - малое значение их магнитной проницаемости. Некоторые типы изделий из магнитомягких ферритов показаны на рисунке.

[MAG42A][Типы сердечников]

Специальные магнитные материалы

Материалы с цилиндрическими магнитными доменами (ЦМД), применяемые для изготовления запоминающих устройств (ЗУ). Емкость отдельного устройства (чипа) на ЦМД может составлять 105 бит. Чем меньше Нс, тем выше быстродействие ЦМД-устройства. Обычно Нс должна быть не больше 10 А/м. Основные материалы для ЦМД устройств приведены в таблице.

МатериалСвойства, oсобенности технологии или применения
Ортоферриты RFeO3
R - редкоземельный элемент
(Y, Sm , Eu , Er , Yb)
Высокая подвижность доменных границ , прозрачность в красном свете ( = 0.6 мкм ). Плотность информации не велика. 103 - 104 бит/см2
Ферриты гранаты
R3Fe5O12
Плотность информации выше 105 - 106 бит/см2, но подвижность доменных границ ниже, чем у ортоферритов. Применяются в виде монокристаллических пленок.
Аморфные магнитные пленки
сплавов Cd-Co и CdFe
Плотность информации до 109 бит/см2 . Относительно низкая стоимость. Низкая термостабильность и низкое электрическое сопротивление - недостатки.
Гексагональные ферриты
BaFe12O19 и др.
Высокая намагниченность насыщения. Субмикронное ЦМД , однако низкая подвижность ограничевает применение.

Аморфные магнитомягкие материалы (АММ)

Аморфные магнитомягкие материалы (АММ) являются магнетиками с неупорядоченным расположением атомов, получаемом наиболее часто в результате быстрой закалки расплава со скоростью охлаждения 104106 град/с. Аморфные тонкие пленки с цилиндрическими магнитными доменами (ЦМД) можно получать катодным распылением или вакуумным напылением редкоземельных и переходных металлов. Металлические аморфные сплавы содержат 75-85% одного или нескольких переходных металлов (Fe, Co, Ni) и 15-25% стеклообразователя, в качестве которого используют бор, углерод, кремний, фосфор. По магнитным свойствам АММ близка к электротехническим сталям и пермаллоям. Наиболее перспективные сплавы- железоникелевые, высококобальтовые и высокожелезистые. Для получения оптимальных свойств применяют термомагнитную обработку, что позволяет повысить Bs и прямоугольность петли гистерезиса. Магнитные свойства двух промышленных сплавов после термобработки показаны в таблице

[Магнитные свойства АММ]

АММ имеют повышенную твердость и коррозионную стойкость.

Удельное сопротивление АММ в 3-5 раз больше, чем у кристаллических.

Применение: магнитные экраны, сердечники малогабаритных трансформаторов, магнитных усилителей, головки магнитозаписывающих устройств.

 

Лекции по курсу Электротехнические материалыначало

Решение задач по физике, электротехнике, математике