Атом водорода Классическая теория теплоёмкости Дебаевская теория Решётка Браве Проводимость твёрдых тел Проводники, полупроводники и изоляторы Прикладная математика и физика Электромагнитное взаимодействие Первообразная функция Интегрирование Вычислить производную задачи

Лекции по курсу Электротехнические материалыначало

 

Высокотемпературные сверхпроводники (ВТСП)

В начале 1987г. появились сообщения о разработке керамического материала со структурой YBa2Cu3O7 , в котором сверхпроводящее состояние наступает при 93К в поле с Вкр=5.7Тл. Такие материалы имеют структуру типа перовскита (минерала CaTiO3 ). Плотность тока в системах Y-Ba-Cu-O получена в настоящее время до 104 А/см2, что меньше, чем в металлических сверхпроводниках. Перспективными являются висмутовые системы Bi2Sr2Ca2Cu3Ox , температура перехода которых достигает -158оС. В популярных изданиях имеются сведения о получении ВТСП с критической 250К. Лучшие сверхпроводящие свойства получаются в пленочных образцах, пропускающих ток ~106А/см2.

Свойства ВТСП во многом зависят от технологии. Наиболее простой способ состоит в размоле металлических оксидов, прессования смеси и отжиге в атмосфере кислорода при температуре 900оС. Новое вещество образуется в результате химической реакции. Для

устранения межгранулярных прослоек и получения более упорядоченной ориентации кристаллов полученное соединение подвергают плавке с последующим охлаждением. Исследуются и другие методы получения ВТСП.

Для широкого применеия ВТСП требуется преодолеть ряд трудностей, к которым можно отнести необходимость получения больших плотностей тока, гибкости, прочности, способности выдерживать большие магнитные и центробежные нагрузки, легкость обработки, стабильность свойств и др.

Перспективы применения сверхпроводников

[Новые сверхпроводники: перспективы применеия]

Перспективы применения сверхпроводников достаточно четко были отражены в статье "Новые сверхпроводники: перспективы применеия" Алана М. Вольски и др. в журнале Scientific American, апрель 4, 1989 наиболее интересные из которых и приведем ниже.

Сверхпроводящие магниты. С помощью обычного электромагнита, представляющего собой катушку из медного провода, размещенной на железном сердечнике, можно создавать поля до 2Тл, причем медные провода выдерживают плотность тока до 400А/см2.

Сверхпроводники позволяют отказаться от железного сердечника за счет увеличения плотности тока до 100000А/см2. Такие плотности тока позволяют получать сплавы из ниобия-3 и олова и ниобия с титаном при температуре жидкого гелия ().

Объемные образцы иттрий - барий - оксид меди выдерживают плотность тока до 4000А/см2 при температуре жидкого азота (77К) в поле 1Тл. В отсутствие магнитного поля плотность тока может достигать 17000А/см2.

Генераторы и линии электропередач. Сверхпроводящие магниты могут повысить КПД генераторов большой мощности до 99.5%, хотя у обычных генераторов он уже достигает 98.6%. Ежегодная экономия топлива составит 1%. Экономически рентабельными сверхпроводниковые линии электропередач могут стать только при передаче по ним большого количества энергии.

Аккумулирование электроэнергии. Сверхпроводящие накопители энергии с охлаждением жидким азотом обошлись бы на 3% дешевле, чем обычные, а общие капитальные затраты уменьшаются еще на 5%.

Поезда на магнитной подушке - наиболее перспективное применеие сверхпроводников для скоростных поездов. Стоимость сооружения пути длиной 500км обойдется в 1.5 - 4.5 млрд долл. Стоимость самих поездов составит не более 10% от общей суммы затрат, а система охлаждения всего 1%.

Сверхнизкие температуры до 10-6К достигнуты в магнитных холодильниках при использовании магнитоэлектрического эффекта. Такие системы важны для космических и оборонных программ.

Компьютеры и сверхпроводники. В будущем может быть создан суперкомпьютер на ВТСП с быстродействием в 1000 раз больше, чем у компьютеров, проектируемых в настоящее время. Время переключения на переходах Джозефсона (два сверхпроводника, разделенных тонким слоем диэлектрика) составит не более 10-13с для Ткр=10К и 10-14с для материала с Ткр=100К.

СКВИДы (сверхпроводящий квантовый итерференционный детектор). С помощью СКВИДа можно измерять падение напряжения до 10-18В, токи 10-18А (несколько электронов в секунду) и магнитные поля меньшие 10-14Тл. Аналогов подобной чувствительности нет. Новые сверхпроводники позволяют регулировать частоты до 1012Гц (близко к квантовому пределу). Чувствительность обычных приборов не превышает 1010Гц. Применение СКВИДов - магнитоэнцефалография, элементы памяти. СКВИДы используются физиками для исследования кварков, магнитных монополей, гравитонов, геологами для поисков нефти, воды, минералов, разрабатываются детекторы для обнаружения подводных лодок.

Криопроводники

Это материалы, удельное сопротивление которых достигает малых значений при криогенных температурах (ниже -173оС). Сверхпроводящее состояние в этих материалах не наблюдается. Наиболее широко в качестве криопроводников применяется чистая медь и алюминий (марки А999 с 0.001% примесей), берилий (0.1% примесей). При температуре жидкого гелия у алюминия А999 удельное электрическое сопротивление равно (1 - 2).10-6мкОм.м.

Применяются криопроводники в основном для изготовления жил кабелей, проводов, работающих при температурах жидкого водорода (-252.6оС), неона (-245.7оС) и азота (-195.6оС).

 

 

Лекции по курсу Электротехнические материалыначало

Решение задач по физике, электротехнике, математике