Атом водорода Классическая теория теплоёмкости Дебаевская теория Решётка Браве Проводимость твёрдых тел Проводники, полупроводники и изоляторы Прикладная математика и физика Электромагнитное взаимодействие Первообразная функция Интегрирование Вычислить производную задачи

Лекции по курсу Электротехнические материалы начало

Ионные соединения

Ионные соединения представляют собой твердые неорганические диэлектрики с ионным типом химической связи. Для этой группы соединений характерны, кроме электронной, ионная и электронно-релаксационная поляризации.

Принято выделять группу диэлектриков с быстрыми видами поляризаций - электронной и ионной, и с замедленными видами поляризаций релаксационного типа, накладывающихся на электронную и ионную поляризацию.

Только быстрые виды поляризаций (электронная и ионная) наблюдаются в кристаллических веществах с плотной упаковкой ионов. К таким веществам относятся каменная соль, кварц, слюда, корунд, двуоки титана (рутил) и др. Ко второй группе относятся кристаллические диэлектрики с неплотной упаковкой частиц в решетке - неорганические стекла, электротехнический фарфор, ситаллы, микалекс и др.

Электронная поляризация

Электронная поляризация - смещение электронного облака относительно центра ядра атома или иона в результате чего возникает электрический момент, исчезающий после окончания действия электрического поля. Наблюдается во всех без исключения диэлектриках. Единственным видом поляризации она является в неполярных диэлектриках. Время протекания поляризации 10-14 - 10-15с. Так как после снятия поля деформированные электронные оболочки возвращаются прежнее положение, то энергия, затраченная на поляризацию, возвращается источнику электрической энергии, поэтому эта поляризация происходит без потерь энергии. Электронная поляризация вместе ионной составляют группу "упругих" или быстрых видов поляризаций.

Электрический момент P, приходящийся на одну частицу (атом или ион) для не слишком больших полей пропорционален напряженности поля

P = . E ; (10)

Коэффициент называется электронной поляризуемостью.

Для многих диэлектриков, таких как газы, неполярные жидкости можно легко установить взаимосвязь между макроскопическим параметром диэлектрической проницаемостью [Epsilon] и микроскопическим параметром - поляризуемостью , используя (9):

P =nE=(-1)E, откуда

=1+ n/. (11)

частиц от температуры не зависит, но диэлектрическая проницаемость, как видно из последней формулы, зависит от числа частиц в единице объема n, которое уменьшается с повышением температуры изза теплового расширения диэлектрика.

 

[Неполярные соединения]

В температурной зависимости диэлектрической проницаемости неполярных диэлектриков резкое уменьшение [Epsilon] с температурой наблюдается при переходах вещества из одного агрегатного состояния в другое из твердого в жидкое и из жидкого в газообразное состояние, как показано на рисунке.

Состояния: 1 - твердое, 2 - жидкое, 3 - газообразное

Диэлектрическая проницаемость неполярных диэлектриков близка к квадрату лучепреломления диэлектрика (следствие уравнения Максвела).

[POL13B]

Так как время установления поляризации у таких диэлектриков очень мало по сравнению с полупериодом приложенного напряжения, их диэлектрическая проницаемость не зависит от частоты вплоть до очень высоких частот, порядка 1014 - 1016 Гц. При таких частотах будет наблюдаться резонансная поляризация.

 

[POL14A]

На рисунке представлена зависимость [Epsilon] от частоты (частота в Гц) для неполярных диэлектриков.

Большие отличия [Epsilon] от [Nu] свидетельствуют о том, что кроме электронной, в веществе возникают и другие виды поляризаций.

 

Ионная поляризация

Ионная поляризация - наблюдается в веществах с ионной химической связью и проявляется в смещении друг относительно друга разноименно заряженных ионов. Как указывалось, время электронной поляризации весьма мало - на 2 - 3 порядка больше электронной поляризации.

Уравнение [POL13B] для веществ с ионной поляризацией не соблюдается. Например, для каменной соли [Nu] = 1.54; [Nu]2 = 2.22 и [Epsilon] = 4.8; для рутила TiO2: [Nu] = 2.7; [Nu]2 = 7.3 и [Epsilon] = 114.

Зависимость диэлектрической проницаемости от температуры у твердых ионных линейных диэлектриков может быть различной. У большинства ионных диэлектриков [Epsilon] с ростом температуры увеличивается, т.к. при этом уменьшается коэффициент упругой связи между ионами и расстояние между ними увеличивается при тепловом расширении материала. Если обозначим через Купр - коэффициент упругой связи между ионами, а через x - смещение ионов, то в состоянии равновесия qE = Купр.X, а элементарный электрический момент пары состоящей из двух разноименно заряженных ионов Pи:

Pи = qx = q2E/ Kупр и = q2/ Kупр; (12)

Тогда поляризованность единицы объема Pи будет равна сумме всех элементарных моментов. Диэлектрическая проницаемость увеличивается с ростом температуры для неорганических стекол различного состава, для керамического материала - электротехнического фарфора, содержащего большое количество стекловидной фазы. Но у некоторых веществ большим внутренним полем электронная поляризация преобладает над ионной, как например у рутила TiO2 и перовскита CaTiO3 , и ростом температуры уменьшается, как показано на рисунке, где 1 для электротехнического фарфора на частоте 50 Гц, а 2- для титаносодержащей керамики.

[POL16A]

Если диэлектрик характеризуется не только электронной, но и ионной поляризацией, то общая поляризуемость (деформационная) будет равна сумме электронной и ионной поляризуемости

= + (13).

Наличие второго слагаемого приводит к тому, что диэлектрическая проницаемость ионных диэлектриков больше, чем у неполярных веществ.

Диэлектрическая проницаемость будет больше у тех ионных диэлектриков, которые содержат многовалентные ионы, например Ti++++, Pb++,O- - . В таких веществах ионы слабо связаны друг с другом и несут большие электрические заряды, что обусловливает большую ионную поляризуемость.

 

Лекции по курсу Электротехнические материалы начало

Решение задач по физике, электротехнике, математике