Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

Электрические цепи переменного тока Пассивные элементы электрической цепи

Электрическая цепь переменного тока, так же как и цепь постоянного тока, содержит проводники, по которым перемещаются электрические заряды. Количество зарядов, проходящих через сечение проводника в единицу времени называется величиной электрического тока. Она зависит от физических свойств и геометрических размеров проводника, а также от разности потенциалов. Связь между этими величинами называется законом Ома.

Закон Ома справедлив всегда, поэтому для любого проводящего участка электрической цепи в любой момент времени можно написать

u = ir = i/g или i = u/r = ug ,

(1)

где u и i - падение напряжения и ток, а r = 1/g и g = 1/r - постоянные коэффициенты, называемые сопротивлением и проводимостью данного участка.

Величина сопротивления определяется коэффициентом, зависящим от свойств проводящей среды и называемым удельным сопротивлением r , а также длиной l и площадью поперечного сечения s участка, в виде r = rl/s. Сопротивление измеряют в омах [Ом] , а обратную ему величину проводимость g в сименсах [См].

Пусть ток в цепи с сопротивлением r изменяется по закону ir = Imsin(wt+yi). Тогда в соответствии с выражением (1) падение напряжения в ней будет

ur = rir = rImsin(wt+yi) = Umsin(wt+yu) .

(2)

Пассивные элементы электрической цепи

Отсюда следует, что начальные фазы тока и напряжения на этом участке одинаковы yi = yu , а амплитуда напряжения равна Um = rIm. Временные диаграммы, соответствующие выражению (2) приведены на рис. 1 а). Там же показано изображение сопротивления на электрических схемах с условно положительными направлениями тока и напряжения.

Амплитудные и действующие значения синусоидальных величин связаны между собой постоянным коэффициентом, поэтому для действующих значений тока и напряжения на сопротивлении можно написать U = rI или I = U/r = gU .

Синусоидальные функции выражения (2) можно заменить комплексными числами

(3)

и изобразить их на векторной диаграмме рис. 1б) с соответствующим представлением на схеме.

Падение напряжения, вызванное протеканием тока, возникает на всех участках электрической цепи. Однако при расчетах его принято изображать отдельным элементом называемым сопротивлением или резистором.


ЗАДАЧА 1 


В электрических цепях с синусоидальными переменными токами и напряжениями помимо статических явлений, свойственных цепям постоянного тока, появляются динамические эффекты, т.е. эффекты связанные с изменением этих величин во времени.

Так на любом участке электрической цепи, по которому протекает переменный ток будет действовать ЭДС самоиндукции eL, наводимая изменяющимся во времени магнитным потоком и равная

Пассивные элементы электрической цепи.

(4)

Магнитный поток обязательно охватывает все участки электрической цепи, следовательно, при переменном токе на всех участках будет возникать дополнительное падение напряжения

,

(5)

Пассивные элементы электрической цепи

где величина xL=wL , имеющая размерность сопротивления, называется индуктивным сопротивлением. Амплитуда напряжения, возникающего за счет ЭДС самоиндукции, равна Um=xLIm , а его начальная фаза yu = yi +p /2 больше начальной фазы протекающего тока на p /2, т.е. напряжение опережает по фазе ток на 90°. Временные диаграммы, соответствующие выражению (5), приведены на рис. 2 а).

Из выражения для амплитуды падения напряжения на индуктивности можно определить его действующее значение UL=xLIL или действующее значение тока IL=UL/xL=bLIL, где bL=1/xL называется индуктивной проводимостью.

Индуктивное сопротивление по сути своей является распределенным параметром, т.к. магнитный поток существует везде, где протекает электрический ток, и на всех участках электрической цепи будет наводиться ЭДС самоиндукции, пропорциональная соответствующему индуктивному сопротивлению. Однако на практике индуктивность всейцепи или отдельного участка считают сосредоточенной в отдельном элементе, изображаемом на схемах в виде рис. 2 а).

Выражение (5) можно представить через символические комплексные числа в виде:

Пассивные элементы электрической цепи,

(6)

где ZL=jxL=xLe jp/2 - комплексное индуктивное сопротивление.

Векторная диаграмма и схема замещения для выражения (6) приведены на рис. 2 б).

Из выражения (6) можно определить комплексное значение тока через падение напряжения

,

(7)

где YL=1/ZL=1/jxL= -jbL =bLe -jp/2 - комплексная индуктивная проводимость.


ЗАДАЧА 2


Из курса физики известно, что заряд уединенного проводящего тела q пропорционален его потенциалу u, т.е. q = Cu . Коэффициент пропорциональности C между зарядом и потенциалом называется емкостью и при неизменных геометрических размерах и свойствах среды является константой. Емкость измеряется в фарадах [Ф] . Фарада является слишком крупной величиной, поэтому для практических целей пользуются ее десятичными долями: микро-, нано- и пикофарадами (10-6, 10-9и 10-12Ф).

Если за бесконечно малый промежуток времени dt заряд тела изменился на величину dq , то изменение потенциала за этот же интервал времени составит du=dq/C или dq=Cdu . Отнесем изменение заряда к промежутку времени, за который оно произошло. Тогда с учетом того, что электрический ток есть скорость изменения заряда, т.е. i=dq/dt, получим

.

(8)

Пусть напряжение на емкости изменяется во времени по синусоидальному закону uС = Umsin(wt+yu). Тогда из выражения (8) ток в емкости определится в виде

.

(9)

Произведение bC= wC имеет размерность проводимости [1/Ом=См] и называется емкостной проводимостью. Отсюда амплитуда тока Im=bCUm , а его начальная фаза yi = yu + p /2 . Таким образом, ток в емкости опережает падение напряжения на ней на 90°. Временные диаграммы, соответствующие этим соотношениям тока и напряжения на емкости приведены на рис. 3 а).

Пользуясь связью между амплитудными и действующими значениями, для действующих значений тока и падения напряжения на емкости можно записать IС=bCUС или UC=IC/bC=xCIC , где величина xC=1/bCназывается емкостным сопротивлением.

При описании электромагнитных процессов в электрических цепях часто требуется выражение для мгновенного значения напряжения на емкости. Его можно получить из выражения (8) в виде

.

(10)

Из выражения (8) следует, что всякое изменение потенциалов в электрической цепи будет вызывать появление токов, приводящих к перераспределению зарядов. Причем, под токами в этом процессе следует понимать как токи проводимости, так и токи смещения, возникающие между всеми участках цепи. Поэтому емкостная проводимость, как и емкость, является распределенным параметром, но для расчетов ее, аналогично индуктивности, представляют сосредоточенной в отдельном элементе, который изображается на схеме в виде рис. 3 а).

Связь между напряжением и током в емкости можно представить также комплексными числами и соответствующими векторами (рис. 3 б)) в виде

Пассивные элементы электрической цепи,

(11)

где YC=jbC=bCe jp/2 - комплексная емкостная проводимость.

Отсюда можно также определить комплексное падение напряжения на емкости

Пассивные элементы электрической цепи,

(12)

где ZC=1/YC=1/jbC= -jxC = xCe -jp/2 - комплексное емкостное сопротивление.


ЗАДАЧА 3


Индуктивность L и емкость C называются реактивными элементами электрической цепи. Реактивными называются также соответствующие сопротивления и проводимости. Это связано с тем, что падение напряжения на индуктивности и ток через емкость появляются только как следствие или реакция на изменение тока или разности потенциалов.

В резисторе падение напряжения не связано с изменением тока, поэтому его сопротивление, в отличие от реактивного, называется активным или резистивным сопротивлением.

Решение задач по физике, электротехнике, математике