Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

 

Электрические цепи переменного тока Источники электрической энергии. Внешняя характеристика

В цепях переменного тока, также как в цепях постоянного, должны действовать источники электрической энергии. Отличие этих источников заключается лишь в том, что создаваемые ими ЭДС или токи являются синусоидальными функциями времени.

Источники делятся на идеальные и реальные. У идеальных источников отсутствует внутреннее сопротивление или проводимость. Создаваемые ими ЭДС или ток определяются только параметрами источника. В электрической цепи с идеальными источниками величина тока через источник ЭДС или напряжение на источнике тока определяются нагрузкой

На электрических схемах они изображаются точно также как источники постоянного тока, но стрелки в условном обозначении указывают направление принятое за положительное.

Источники электрической энергии. Внешняя характеристика

Реальные источники электрической энергии имеют внутреннее сопротивление Z или проводимость Y (рис. 1). Однако на переменном токе эти величины в общем случае являются комплексными.

Также как на постоянном токе, реальный источник может быть представлен двумя эквивалентными схемами с источником ЭДС или с источником тока. Внутреннее сопротивление, проводимость и параметры источников связаны между собой отношениями

Y = 1/Z ; J = E/Z ; E = J/Y,

(1)

формально идентичными соответствующим выражениям для источников постоянного тока. ЭДС и ток внутренних источников соответствуют напряжению на выходе в режиме холостого хода и току в режиме короткого замыкания.


ЗАДАЧА 1


Для источников переменного тока невозможно построить вольтамперную характеристику. Ее роль играет внешняя характеристика, т.е зависимость действующего значения напряжения на выходе источника от величины действующего значения тока в нагрузке, при постоянном значении угла сдвига фаз в нагрузке jн.

Источники электрической энергии. Внешняя характеристика

Рассмотрим электрическую цепь, состоящую из реального источника и нагрузки общего вида (рис. 2). Ток в нагрузке по закону Ома можно определить из выражения

Источники электрической энергии. Внешняя характеристика.

(2)

Отсюда, падение напряжения в нагрузке

Источники электрической энергии. Внешняя характеристика,

(3)

где - комплексное относительное сопротивление нагрузки.

Падение напряжения в нагрузке можно представить в относительных единицах, если выбрать в качестве базовой величины ЭДС источника. Тогда комплексное относительное напряжение в нагрузке из выражения (3) будет -

Источники электрической энергии. Внешняя характеристика.

(4)

Ток в цепи также можно представить в относительных единицах, если в качестве базовой величины выбрать ток короткого замыкания источника Iкз=E/Zs . Отсюда комплексный относительный ток -

Источники электрической энергии. Внешняя характеристика.

(5)

Модуль комплексного относительного тока или просто относительный ток можно получить, определив модуль знаменателя выражения (5) из выражения для комплексного относительного сопротивления, в виде

Источники электрической энергии. Внешняя характеристика.

(6)

Из выражения (2) с учетом (6) относительное напряжение в нагрузке будет

.

(7)

Выражения (6) и (7) позволяют построить внешнюю характеристику источника электрической энергии в относительных единицах, если в них принять в качестве переменной модуль комплексного относительного сопротивления нагрузки z , при условии постоянства его аргумента d Источники электрической энергии. Внешняя характеристика

Внешние характеристики для относительного сопротивления нагрузки, изменяющегося в пределах 0 < z <µ , при четырех значениях разности углов j нагрузки и внутреннего сопротивления источника построены на рис. 3. Использование относительных единиц позволяет анализировать закономерности функций безотносительно конкретных значений параметров. Любой источник электрической энергии в режиме холостого хода имеет выходное напряжение равное ЭДС внутреннего источника, а в режиме короткого замыкания, ток на выходе равен току внутреннего источника тока. Любой реальный источник обладает также конечным значением внутреннего сопротивления, что позволяет соотнести его с сопротивлением нагрузки и получить для нагрузочного сопротивления, изменяющегося в диапазоне от нуля до бесконечности, изменение относительного сопротивления z в том же диапазоне. Поэтому выбор указанных значений в качестве базовых для относительных единиц позволяет распространить выводы из анализа внешних характеристик на любой реальный источник при всех возможных вариантах нагрузки.

Из выражений (6) и (7) следует, что при определенных условиях относительное напряжение нагрузки и ток могут иметь значение больше единицы. Это означает, что в нагрузке может протекать ток больше тока короткого замыкания источника и существовать напряжение больше ЭДС источника. Определим эти условия.

Для относительного тока i условие i > 1.0 сводится к условию Источники электрической энергии. Внешняя характеристика, а для относительного напряжения u - к условию - . Отсюда для тока и напряжения получим соответственно условия

и

(8)

  .

(9)

Так как 0 < z <µ , то соотношения (8) и (9) будут выполняться только для |d | >p /2, если же это условие выполнено, то всегда найдутся такие значения z , при которых эти выражения будут справедливыми. Это означает, что внешняя характеристика будет иметь участки, на которых напряжение в нагрузке превышает ЭДС источника и ток в нагрузке превышает ток короткого замыкания.

Аргумент комплексного относительного сопротивления d представляет разность jн-js Но т.к. обе величины по абсолютному значению меньше p /2, то условие |d | > p /2 может быть выполнено только, если реактивные составляющие комплексных сопротивлений нагрузки и источника имеют противоположные знаки.

Таким образом, из выражений (8) и (9) можно определить диапазоны относительных сопротивлений, при которых относительный ток и напряжение будут больше единицы в виде

0 < z < - 2cosd и

(10)

.

(11)

Если z одновременно находится в диапазонах, определяемых выражениями (10) и (11), то внешняя характеристика имеет участок, на котором обе относительные величины (ток и напряжение) больше единицы. Для этого границы обоих диапазонов должны перекрываться. Определим значение d, для предельного состояния, когда границы диапазонов совпадают, т.е. 2cosd = 1/(2cosd). Отсюда d = 3p /2.

Рассмотрим вопрос о полной или кажущейся мощности в нагрузке. Эта величина не имеет такого физического смысла как активная и реактивная мощность, но с ее помощью можно оценить предельно возможную мощность устройства. Полная мощность представляет собой произведение тока и напряжения, поэтому из выражений (6) и(7) ее можно записать в относительных единицах в виде

.

(12)

Проверим выражение (12) на наличие экстремума. Для этого возьмем производную ds/dzи приравняем ее нулю. Экстремум существует, является максимумом и соответствует z = 1.0 . Подставив это значение относительного сопротивления в (7), получим уравнение геометрического места точек экстремума на плоскости внешней характеристики - u = i , т.е. все точки максимальной полной мощности располагаются на линии, проходящей через начало координат под углом 45° .

Значение максимальной полной мощности из (12) получается подстановкой z = 1.0 -

.

(13)

Из выражения (13) следует, что максимальная полная мощность минимальна и равна 1/4, когда аргументы комплексных сопротивлений нагрузки и источника одинаковы. По мере роста разности jн-js мощность быстро растет и стремится к бесконечности, когда jн = -js = ±p /2. Физически это объясняется тем, что в этих условиях Zs+Zн= 0 и ток возрастает до бесконечно большого значения (см.выражение (2)). Реально такой режим в системе источник-нагрузка невозможен, однако на практике относительная полная мощность может быть существенно больше единицы.

Из проведенного анализа внешних характеристик реальных источников электрической энергии можно сделать следующие выводы:


ЗАДАЧА 2


Решение задач по физике, электротехнике, математике