Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

Электрические цепи переменного тока Треугольники напряжений, токов, сопротивлений и проводимостей

Как известно, любая электрическая цепь состоит или может быть представлена в виде двухполюсников. Пассивный двухполюсник однозначно определяется значениями тока и напряжения на входе или их отношением.

Треугольники напряжений, токов, сопротивлений и проводимостей

Пусть через некоторый двухполюсник протекает переменный ток и существует падение напряжения. Изобразим ток и напряжение на входе двухполюсника векторами на комплексной плоскости I и U (рис. 1).

Проектируя вектор U на направление вектора I (рис. 1 а)), получим вектор, модуль которого равен Uа=Ucosj , где j - разность начальных фаз напряжения и тока на входе двухполюсника, причем, направление вектора Uа совпадает с направлением вектора тока, поэтому его запись в показательной форме будет иметь вид

,

(1)

где yi - начальная фаза тока на входе двухполюсника.

Перпендикуляр, опущенный из конца вектора U на направление вектора тока, имеет длину Usinj и может рассматриваться как некоторый вектор Uр , сумма которого с вектором Uа равна U (рис. 1 а)). Его также можно записать в показательной форме в виде

.

(2)

Оператор поворота j в выражении (2) учитывает перпендикулярное положение вектора Uр по отношению к I и условие Uа + Uр = U.

Так как по построению векторы Uа и Uр в сумме равны U, то из выражений (1) и (2) вектор напряжения на входе двухполюсника можно представить как

Треугольники напряжений, токов, сопротивлений и проводимостей.

(3)

Разделим выражение (3) на модуль вектора тока

Треугольники напряжений, токов, сопротивлений и проводимостей.

(4)

Выражение (4) соответствует представлению на комплексной плоскости вектора Z, равного комплексному сопротивлению двухполюсника и развернутого относительно вещественной оси на угол yi. При этом вектор Zejje jyi=Zej(yu-y i+yi)= Ze jyu образует с вещественной осью комплексной плоскости угол yu , т.е. оказывается совпадающим по направлению с вектором U.

Сравнивая вещественные и мнимые части выражений (3) и (4), можно представить модули составляющих вектора U в виде

,

(5)

т.е. модуль составляющей Uа , называемой активной или резистивной составляющей напряжения на входе двухполюсника, представляет собой падение напряжения на резистивной составляющей его комплексного сопротивления при токе I . Аналогично, модуль вектора Uр , называемого реактивной составляющей входного напряжения, является падением напряжения на реактивной составляющей комплексного сопротивления.

Рассмотренным соотношениям величин соответствует представление двухполюсника последовательным соединением резистора R и реактивного сопротивления X, представленным на рис. 1 а).

Таким образом, вектор падения напряжения на входе двухполюсника может быть представлен двумя составляющими, одна из которых является его проекцией на направление вектора входного тока и называется активной (резистивной) составляющей или активным падением напряжения. Активная составляющая соответствует падению напряжения на резистивном сопротивлении последовательной эквивалентной схемы двухполюсника. Вторая составляющая перпендикулярна вектору тока и соответствует падению напряжения на реактивном сопротивлении последовательной эквивалентной схемы.

Прямоугольные треугольники UUаUр и ZRX (рис. 1 а)) подобны и называются соответственно треугольниками напряжений и сопротивлений.


 ЗАДАЧА 1


 Спроектируем теперь вектор тока I на направление вектора падения напряжения U(рис. 1 б)). Длина проекции будет равна Iа=Icosj , а длина проектирующего перпендикуляра - Iр=Isinj . Представим эти отрезки векторами с учетом того, что Iа совпадает с направлением вектора падения напряжения на входе двухполюсника, а в сумме эти два вектора должны быть равны I . Тогда в показательной форме -

Треугольники напряжений, токов, сопротивлений и проводимостей

(6)

Треугольники напряжений, токов, сопротивлений и проводимостей

(7)

Множитель -j является оператором поворота отрезка Iр на 90° в направлении отставания, чтобы обеспечивалось условие Iа + Iр = I .

Представим теперь вектор тока через полученные составляющие

Треугольники напряжений, токов, сопротивлений и проводимостей.

(8)

Разделим выражение (8) на модуль вектора U -

.

(9)

Таким образом, из прямоугольного треугольника, составленного из векторов Iа, Iр и I и описанного выражением (8), делением на постоянную величину U всех его сторон мы получили подобный треугольник, описываемый выражением (9). Стороны нового треугольника имеют размерность проводимости и связаны с составляющими вектора тока законом Ома

Треугольники напряжений, токов, сопротивлений и проводимостей.

(10)

Следовательно, активную и реактивную составляющую вектора тока можно представить, в виде токов, протекающих через активную (резистивную) проводимость G и реактивную проводимость B эквивалентной параллельной схемы двухполюсника (рис. 1 б)).

Прямоугольные треугольники IIаIр и YGB(рис. 1 б)) подобны и называются соответственно треугольниками токов и проводимостей. Очевидно, что треугольники токов и проводимостей подобны треугольникам напряжений и сопротивлений, т.к. имеют одинаковые углы.

Обобщая понятия составляющих векторов тока и напряжения на входе двухполюсника, можно сделать следующие выводы:


 ЗАДАЧА 2


Последовательное и параллельное соединения. Эквивалентные параметры

Общие основы электротехники начало

Последовательное и параллельное соединения. Эквивалентные параметры

Решение задач по физике, электротехнике, математике