Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Сборник задач по ядерной физике Ядерная реакция Законы сохранения импульсная диаграмма Термоядерная реакция фотоэффект Эффект Комптона Закон Кирхгофа Волновая функция Уравнение Шрёдингера Длина волны Дебройля Волновые пакеты Туннельный эффект Оператор энергии Оператор импульса

Последовательное и параллельное соединения. Эквивалентные параметры

Общие основы электротехники начало

Последовательное и параллельное соединения. Эквивалентные параметры

Электрические цепи переменного тока Символический метод расчета

Анализ электромагнитных процессов в электрических цепях переменного тока в общем случае возможен только с использованием представления токов, напряжений и параметров цепи комплексными числами. Это позволяет исключить тригонометрические функции из уравнений, описывающих электрическую цепь и сделать их линейными. Так как при этом все величины заменяются их изображениями или символами , то этот метод носит название символического.

Последовательность операций в символическом методе в общем случае следующая:

Последняя операция не является обязательной, т.к. некоторые величины (амплитудные и действующие значения токов и напряжений, активные и реактивные составляющие и т.п.) не изменяются при обратном преобразовании.


Рассмотрим применение этого метода на примере цепи, изображенной на рис. 1 а).

 

Символический метод расчета

Обозначим стрелками направления токов принятые за положительные. Тогда во временной области для этой цепи можно составить уравнения Кирхгофа в виде

Символический метод расчета

(1)

Если в выражениях (1) заменить токи и ЭДС синусоидальными функциями времени, то решить эту систему уравнений будет весьма затруднительно.

Перейдем к изображениям параметров исходной схемы комплексными числами в виде: Z1 = jw L1; Z21 = R1; Z22 = -j/(wC); Z3 = R2; Z41 = R3; Z42 = jw L2; Z1 = R4 . Этим параметрам соответствует схема замещения рис. 1 б). Вторая и четвертая ветви этой схемы имеют по два элемента. Их можно преобразовать как последовательное соединение к виду Z2 = R1-j/(wC) и Z4 = R3+jw L2, но соединения R1-C и R3-L2 можно сразу представить одним комплексным числом, в котором вещественная часть соответствует резистивному сопротивлению, а реактивная - емкостному и индуктивному. В результате схема замещения будет такой, как показано на рис. 1 в).

Переход от оригиналов к изображениям является линейной операцией, поэтому все законы справедливые для области оригиналов будут справедливы и для изображений. Кроме того, в области изображений отсутствует параметр времени и все величины являются константами, аналогично цепям постоянного тока. Поэтому формально в расчетах по схеме замещения можно применять не только основные законы электрических цепей, такие как законы Ома и Кирхгофа, но и все производные от них методы, т.е. метод контурных токов, узловых потенциалов, наложения, эквивалентного генератора и др.

Для символической схемы замещения можно составить уравнения Кирхгофа в виде

Символический метод расчета

(2)

Из этой системы уравнений можно найти, например, токи, представив ее в удобной для машинного анализа матричной форме записи

Символический метод расчета

(3)

или в развернутой форме

Символический метод расчета

(4)

Отсюда можно найти комплексные токи во всех ветвях, если известны параметры цепи и ЭДС источника. Пусть, например, e = 100sin(1000t-27° ) В; R1 = 20 Ом; R2 = 15 Ом; R3 = 30 Ом; R4 = 25 Ом; L1 = 10 мГн; L2 = 50 мГн; C = 50 мкФ. Тогда комплексные сопротивления и ЭДС будут Z1 = j10 Ом; Z2 = 20-j20 Ом; Z3 = 15 Ом; Z4 = 30+j50 Ом; Z5 = 25 Ом; Em = 100e-j27°.

После решения системы уравнений (2) получим: I1m = 5.96e-j40.4°А; I2m = 3.67e-j16°А; I3m = 3.03e-j70.5°А; I4m = 1.02e-j112.7°А; I5m = 2.38e-j53.7°А. В этих выражениях определены амплитуды и начальные фазы всех токов. Делением модулей токов на можно найти их действующие значения, а если требуется, то можно представить и синусоидальными функциями времени в виде: i1 = 4.67sin(1000t - 67.4° ) А; i2 = 2.87sin(1000t - 43° ) А; i3 = 2.37sin(1000t - 97° ) А; i4 = 0.8sin(1000t - 139° ) А; i5 = 1.86sin(1000t - 80° ) А


Символический метод расчета

Найдем теперь падение напряжения между узлами a и c цепи рис. 1 а), пользуясь эквивалентными преобразованиями и законом Ома. Схема замещения этой цепи приведена на рис. 1 в) и 2 а). Поэтапно преобразуя цепь Z4ÙZ5ÞZ45=Z4 Z5/( Z4+ Z5)=18.7+j5.65 Ом; Z45ÙZ3ÞZ345= Z45+ Z3=33.7+j5.65 Ом; Z345ÙZ2ÞZ2345= Z345 Z2/( Z345+ Z2)=16.3-j6.1 Ом(рис. 2 б)-г)), перейдем к цепи, представляющей собой один контур с последовательным соединением Z1-Z2345-E.

Ток в контуре рис. 2 г) равен I1m = Em/(Z1+Z2345)=100e-j27°/(16.3+j3.9) =5.96e-j40.4°А. Как и следовало ожидать, ток I1m получился равным току рассчитанному по законам Кирхгофа. Отсюда искомая разность потенциалов Uacm= I1m Z2345=103.8e-j61° или в области оригиналов uac = 103.8sin(1000t - 61° ) В.

Следует обратить внимание на то, что в исследуемой цепи амплитуда падения напряжения между узлами a и c превышает амплитуду источника ЭДС. Объяснение этому явлению дано в анализе внешних характеристик источников питания переменного тока.

 

Последовательное и параллельное соединения. Эквивалентные параметры

Общие основы электротехники начало

Последовательное и параллельное соединения. Эквивалентные параметры

Решение задач по физике, электротехнике, математике