Физика. Примеры решения задач контрольной работы

Физика
Контрольная работа
Теплотехника
Колебания
Свободные незатухающие
колебания
Затухание свободных
колебаний
Вынужденные колебания
Физика атомного ядра
Электротехнические материалы
Электромагнитное
взаимодействие
Квантооптические явления
Оптика
Волновая оптика
Электромагнитные волн
Принцип суперпозиции волн
Принцип Гюгенса
Интерференция света
Дифракция света
Опыт Майкельсона.
Теория аберрации Стокса
Интерференция
поляризованных лучей.
Физические основы механики
Молекулярная физика
и термодинамика
Молекулярно-кинетическая
теория
Электромагнетизм
Сложение колебаний
Электpостатика
Электpический заpяд
Закон Кулона
Потенциал
Пpоводники в
электpостатическом поле
Диэлектpики в электpическом
поле
Поток вектоpа напpяженности
Теоpема Гаусса
Электpическая емкость
Основные законы постоянного
тока
Проектирование электропривода
Энеpгия электpического поля
Электроника
Ядерная физика
История создания и развития
ядерной индустрии
Элементарные частицы
Теория относительности
Измерение заряда электрона
Ионизирующие излучения
Теория рассеяния альфа-частиц
в веществе
Ядерные реакции
Периодическая система элементов
Математика
Контрольная
Примеры решения интегралов
Высшая математика в экономике
Задачи
Комплексные числа
Дифференциальное и
интегральное исчисление
Интегралы
Графика
Архитектура
Курс лекций по истории искусства
Эпоха Возрождения
Машиностроительное черчение
Инженерная графика
Основные задачи на прямую
и плоскость
Векторная алгебра
Исследование функции
и построение графика
Производная функции
Свойства комплексных чисел
Информатика
Лабораторные работы
Курс лекций по информатике
Локальная сеть

Законы сохранения импульса и энергии

Закон сохранения импульса:

,

где n – полное число тел, входящих в замкнутую систему.

Работа переменной силы

При F =const

A=FDrcosa,

где a- угол между направлениями силы   и перемещения. Средняя мощность за время Dt

.

Мгновенная мощность

,

где - элементарная работа за промежуток времени dt.

Кинетическая энергия тела при поступательном движении

.

Потенциальная энергия тела в поле силы тяжести

,

где h – высота тела над начальным уровнем отсчёта.

Потенциальная энергия тела при упругой деформации

,

где k – коэффициент упругости, x – абсолютная деформация.

В замкнутой системе, где действуют консервативные силы,

Eк+Eп=const.

При действии сил трения необходимо учитывать потери механической энергии.

примеры решения задач

Задача 1. Частица массой m1, имеющая скорость V2, налетела на покоящийся шар массой m2 и отскочила от него со скоростью U1 под прямым углом к направлению первоначального движения. Какова скорость U2 шара после соударения? Считать удар центральным.

Используя закон сохранения импульса, получим

На рисунке покажем импульсы тел.


Модуль импульса шара найдём, используя теорему Пифагора:

,

отсюда

Ответ:


Задача 2. Шар массой M висит на нити длиной l. В шар попадает горизонтально летящая пуля и застревает в нём. С какой скоростью V0 должна лететь пуля, чтобы в результате попадания пули шар мог сделать на нити полный оборот в вертикальной плоскости? Размерами шара пренебречь. В верхней точке сила натяжения нити равна нулю. Масса пули m.

Обозначим: V - скорость шара с пулей сразу после неупругого соударения, U - скорость шара с пулей в верхней точке.

В проекциях на ось OX закон сохранения импульса имеет вид

mV0 = (m + M) V. (1)

Выберем нулевой уровень отсчёта потенциальной энергии, совпадающий с осью OX .

В нижнем положении шар с пулей обладает только кинетической энергией ; в верхней точке - кинетической  и потенциальной (m+M)gh энергиями, где h = 2R =2l.

Закон сохранения механической энергии запишем в виде

  . (2)

После преобразований

.  (2¢)

В верхней точке на шар с пулей действует сила тяжести, по условию задачи сила натяжения нити равна нулю. Используем II закон Ньютона:

  (3)

где

Из уравнения (1) выразим V0:

. (4)

Из уравнения (3)

 (5)

Подставив (5) в (2¢), получим

Найдем V0 , вернувшись к (4)

 

Ответ:

Задача 3. Какова работа силы трения за один оборот аэросаней, движущихся по вертикальной круговой дорожке? Скорость саней постоянна и равна V, масса саней m, коэффициент трения k.

На рисунке покажем все силы, действующие на сани в произвольной точке траектории, учитывая, что , т.к. V=const.

Полная работа силы трения

где 

Силу реакции опоры N выразим из уравнения второго закона Ньютона, записанного в проекциях на радиальную ось:

где , R - радиус окружности.

Элементарная работа силы трения

Работа силы трения

После интегрирования

Ответ:

На главную