Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Математический анализ Понятие дифференциала функции

Высшая математика в экономике

Понятие дифференциала функции

Определение и геометрический смысл дифференциала

Определение 1. Дифференциалом функции у = f(x) в точке x0 называется главная линейная относительно Δx часть приращения функции в этой точке: 

Дифференциалом dx независимой переменной х будем называть приращение этой переменной Δx, т.е. соотношение (4.3) принимает вид

Из равенства (4.4) производную f'(x) в любой точке х можно вычислить как отношение дифференциала функции dy к дифференциалу независимой переменной dx:

Дифференциал функции имеет четкий геометрический смысл (рис. 4.3). Пусть точка М на графике функции у = f{x) соответствует значению аргумента x0, точка N — значению аргумента x0 + Δx, MS — касательная к кривой f(x) в точке М, φ — угол между касательной и осью Ох. Тогда МА — приращение аргумента, AN — соответствующее приращение функции. Рассматривая треугольник АВМ, получаем, что АВ = Δx tg φ = f'(x0) Δx = dy, т.е. это главная по порядку величины Δx и линейная относительно нее часть приращения функции Δу. Оставшаяся часть более высокого порядка малости соответствует отрезку BN.

Приближенные вычисления с помощью дифференциала

Приближенные вычисления с применением дифференциала функции основаны на приближенной замене приращения функции в точке на ее дифференциал:

Абсолютная погрешность от такой замены является, как следует из рис. 4.3, при Δx  0 бесконечно малой более высокого порядка по сравнению с Δx. Подставляя в это приближенное соотношение формулу (4.4) и выражение для Δу, получаем

Формула (4.6) является основной в приближенных вычислениях.

Пример. Вычислить приближенное значение корня .

Решение. Рассмотрим функцию f(x) = x0,5 в окрестности точки x0 = 1. Поскольку, как будет показано далее, производная этой функции вычисляется по формуле f'(x) = , то, принимая Δx = 0,07, получаем из формулы (4.6)

4.3. Правила дифференцирования суммы, произведения и частного 

Приведем без доказательства одну из основных теорем дифференциального исчисления.

ТЕОРЕМА 2. Если функции и(х) и v(x) дифференцируемы в точке х0, то сумма (разность), произведение и частное этих функций (частное при условии v(x) ≠ 0) также дифференцируемы в этой точке, причем справедливы следующие формулы:

4.4. Таблица производных простейших элементарных функций

Производные всех простейших элементарно функций можно свести в следующую таблицу.

1. (С)' = 0, где С — постоянное число. 

2. (xα)' = αxα-1; в частности,  = - , ()' = .

3. (logax)' = logae; в частности, (ln x)' = .

4. (аx)' = ax ln а; в частности, (еx)' = еx.

5. (sin x)' = cos x.

6. (cos x)’= -sin x.

7.(tg x)' = .

8. (ctg x)' = - .

9. (arcsin х)' = .

10. (arccos x)' = - .

11. (arctg x)' = .

12. (arcctg x)' = - .

Формулы, приведенные в таблице, вместе с правилами дифференцирования (теорема 4.2) являются основными формулами дифференциального исчисления. Отсюда можно сделать важный вывод: поскольку производная любой элементарной функции есть также элементарная функция, то операция дифференцирования не выводит из класса элементарных функций.

4.5. Дифференцирование сложной функции

ТЕОРЕМА 3. Пусть функция х = φ(t) имеет производную в точке t0, а функция у = f(x) имеет производную в соответствующей точке x0 = φ(t0). Тогда сложная функция f[φ(t)] имеет производную в точке t0 u справедлива следующая формула: 

В теореме 4.3 рассмотрена суперпозиция двух функций, где у зависит от t через промежуточную переменную х. Возможна и более сложная зависимость с двумя и более промежуточными переменными, однако правило дифференцирования сложной функции остается тем же. Например, если у = у(х), х = φ(и), и = ψ(t), то производная y'(t) вычисляется по формуле

Рассмотрим несколько примеров на дифференцирование сложной функции.

Пример 1. Найти производную функции у = tg (x3).

Решение. Эту функцию можно представить через промежуточную переменную и как y = tg u, и = х3. Тогда по формуле (4.7) имеем

Пример 2. Найти производную функции у = .

Решение. Здесь функция представляется с помощью трех промежуточных переменных: у = еu, и = v2, v = tg w, w = 4x. Применяя правило (4.7) дифференцирования сложной функции, последовательно получаем 

Пример 3. Найти угол наклона к оси Оx касательной к графику функции

Решение. Данная функция является суммой двух сложных функций, представляемых через промежуточные переменные как

Применяя правила дифференцирования суммы функций и сложных функций, получаем

Поскольку тангенс угла наклона касательной к оси Ох при х = 0 равен значению производной в этой точке, из последнего равенства получаем, подставляя в него х = 0:

откуда φ = arctg 1 = 45°.

Производная обратных функций.

 Пусть требуется найти производную функции у = f(x) при условии, что обратная ей функция x = g(y) имеет производную, отличную от нуля в соответствующей точке.

 Для решения этой задачи дифференцируем функцию x = g(y) по х:

т.к. g¢(y) ¹

т.е. производная обратной функции обратна по величине производной данной функции.

  Пример. Найти формулу для производной функции arctg.

 Функция arctg является функцией, обратной функции tg, т.е. ее производная может быть найдена следующим образом:

 Известно, что  

По приведенной выше формуле получаем:

Т.к.  то можно записать окончательную формулу для производной арктангенса:

  Таким образом получены все формулы для производных арксинуса, арккосинуса и других обратных функций, приведенных в таблице производных.

Понятие производной n-го порядка Производная f'(x) функции f(x) сама является функцией аргумента х, и по отношению к ней также можно ставить вопрос о производной. Производная от первой производной некоторой функции у = f(x) называется второй производной, или производной второго порядка этой функции. Производная от второй производной называется третьей производной, или производной третьего порядка. Этот процесс можно продолжить. Производные начиная со второй называются производными высших порядков. Для их обозначения используют символы: у", у'", у(4), у(5), ..., у(n) (для второй и третьей производных соответственно еще и у(2) и у(3)) или вместо у пишут f(x): f"(x), f"(х), ..., f(n)(x).

Применение производных в исследовании функций Раскрытие неопределенностей Правило Лопиталя

Исследование функций и построение графиков Признак монотонности функции Одной из существенных характеристик функции является ее поведение на отдельных интервалах — возрастание или убывание. Это определяется приводимой ниже теоремой, доказательство которой мы опускаем.

Степенные ряды.

Понятие степенного ряда.

 На практике часто применяется разложение функций в степенной ряд.

 Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

  Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при и расходится при .

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:  ряд сходится по признаку Лейбница (см. Признак Лейбница).

При х = -1:  ряд расходится (гармонический ряд).


Основные правила интегрирования