Математический анализ Понятие дифференциала функции

Высшая математика в экономике

Основы математики

Математический анализ

Математический анализ представляет собой основу всей высшей математики. Его содержание составляют дифференциальное и интегральное исчисления одной и нескольких переменных.

МНОЖЕСТВА

Множества. Основные обозначения. Операции над множествами

Понятие множества является одним из основных в математике. Система, семейство, совокупность — эти термины можно считать синонимами слова "множество". Множество можно определить как совокупность объектов, объединенных по определенному признаку. Например, множество зрителей в данном кинотеатре; множество студентов определенного учебного заведения; совокупность студентов, учащихся на "хорошо" и "отлично" в некоторой школе, совокупность коммерческих банков, имеющих уставный фонд не ниже 100 миллиардов рублей. Множество может содержать конечное или бесконечное число объектов.

Объекты, составляющие множество, называются его элементами или точками. Обычно множества обозначаются большими буквами, а входящие в них элементы — малыми буквами. Выражение "элемент х из множества Х" соответствует записи х  Х (х принадлежит X); если же элемент х не входит в множество X, то это соответствует записи х  Х (х не принадлежит X).

Методом исключения неизвестных найти общее и базисное решение системы линейных уравнений  Практикум по решению математических задач

Пусть Х и Y — два множества. Тогда между ними можно определить следующие соотношения. Если оба множества состоят из одних и тех же элементов, то они совпадают, что соответствует записи X=Y. Если все элементы множества Х содержатся в множестве Y, то Х целиком содержится в Y, или Х  Y (X является подмножеством множества Y). Если ни один элемент множества Х не содержится в Y, то, значит, и само множество X не содержится в Y, или X Y.

В математике используется понятие пустого множества, обозначаемого символом Ø. Это множество, в котором не содержится ни один элемент, и потому оно является подмножеством любого множества.

Введем также понятия суммы множеств и их пересечения. Суммой или объединением двух множеств Х и.Y называется совокупность элементов, входящих как в множество X, так и в множество Y. Сумма этих множеств обозначается XY. Например, пусть Х — множество государственных предприятий с годовым оборотом не ниже S денежных единиц, а Y — множество негосударственных предприятий с тем же порогом годового оборота; тогда Х  Y будет множеством всех предприятий с указанным нижним ограничением S.

Отметим, что добавление пустого множества Ø к любому множеству Х не меняет этого множества, т.е.

Х  Ø = Х.

Пересечением множеств Х и Y (или их общей частью) является совокупность элементов, входящих как в множество X, так и в множество Y; это множество обозначается Х  Y. Например, если Х — это множество предприятий с годовым оборотом Т не ниже s, а Y — совокупность предприятий с годовым оборотом не более S, причем s < S, то в пересечение Х  Y войдут объекты с годовым оборотом T, удовлетворяющим неравенству

s ≤ T ≤ S.

Отсутствие элементов со свойствами множеств Х и У одновременно означает, что пересечение этих множеств представляет собой пустое множество Ø. Схематически пересечение двух множеств показано на рис. 1.1 (заштрихованная область).

 

Рис. 1.1

Разностью множеств Х и Y называется множество Z, содержащее все элементы множества X, не содержащиеся в Y; эта разность обозначается Z = Х \ Y.

В общем случае сложение и пересечение определяются для любого конечного числа множеств путем последовательного попарного проведения соответствующих операций.

В математических формулировках довольно часто используются отдельные предложения и слова, так что при их записи целесообразно употреблять экономную логическую символику. Вместо выражения "любое х из множества X" употребима запись , где перевернутая латинская буква  взята от начала английского слова Any — любой. Аналогично вместо выражения "существует элемент х из множества X" кратко пишут:, где перевернутая латинская буква  является начальной в английском слове Existence — существование.

Вещественные числа и их свойства 

Множество вещественных чисел является бесконечным. Оно состоит из рациональных и иррациональных чисел. Рациональным называется число вида p/q, где р и q — целые числа. Всякое вещественное число, не являющееся рациональным, называется иррациональным. Всякое рациональное число либо является целым, либо представляет собой конечную или периодическую бесконечную десятичную дробь. Например, рациональное число 1/9 можно представить в виде 0,11111.... Иррациональное число представляет собой бесконечную непериодическую десятичную дробь; примеры иррациональных чисел:

 = 1,41421356...;  = 3,14159265....

Сведения о вещественных числах могут быть кратко систематизированы в виде перечисления их свойств.

А. Сложение и умножение вещественных чисел

Для любой пары вещественных чисел а и b определены единственным образом два вещественных числа а + b и а ∙ b, называемые соответственно их суммой и произведением. Для любых чисел а,b и с имеют место следующие свойства.

1. a + b = b + а, а ∙ b = b ∙ а (переместительное свойство).

2. а + (b + с) = (а + b) + с, а ∙ (b ∙ с) = (а ∙ b) ∙ с (сочетательное свойство).

3. (а + b) ∙ с = а ∙ с + b ∙ с (распределительное свойство).

4. Существует единственное число 0, такое, что а + 0 = a для любого числа а.

5. Для любого числа а существует такое число (-а), что а + (-а) = 0.

6. Существует единственное число 1 ≠ 0, такое, что для любого числа а имеет место равенство

а ∙ 1 = a.

7. Для любого числа а ≠ 0 существует такое число а-1, что а ∙ а-1 = 1. Число а-1 обозначается также символом .

В. Сравнение вещественных чисел

Для любых двух вещественных чисел имеет место одно из трех соотношений: а = b (а равно b), а > b (а больше b) или а < b (а меньше b). Отношение равенства обладает свойством транзитивности: если а = b и b = с, то а = с.

Отношение "больше" обладает следующими свойствами.

8. Если а > b и b > с, то а > с.

9. Если а > b, то а + с > b + с.

10. Если а > 0 и b > 0, то а b > 0

Вместо соотношения а > b употребляют также b < а. Запись а ≥ b (b ≤ а) означает, что либо а = b, либо a > b. Соотношения со знаками >, <, ≥ и ≤ называютcя неравенствами, причем соотношения типа 8 < 10 — строгими неравенствами.

11. Любое вещественное число можно приблизить рациональными числами с произвольной точностью.

С. Непрерывность вещественных чисел.

12. Пусть Х и Y — два множества вещественных чисел. Тогда, если для любых чисел и  выполняется неравенство х ≤ у, то существует хотя бы одно число с, такое, что для всех х и у выполняются неравенства х ≤ с ≤ у.

Отметим здесь, что свойством непрерывности обладает множество всех вещественных (действительных) чисел, но не обладает множество, состоящее только из рациональных чисел.

Таким образом, вещественные числа представляют собой множество элементов, обладающих свойствами А-С. Такое определение, из которого выводятся остальные свойства, называется аксиоматическим, а сами свойства А-С — аксиомами вещественных чисел.

Числовая прямая (числовая ось) и множества на ней 

Здесь нам понадобится понятие о соответствии множеств, позже мы еще раз обратимся к нему в разделе о функциональной зависимости. Будем говорить, что между множествами Х и Y установлено соответствие, если по какому-либо закону или правилу каждому элементу х  Х соответствует элемент у  Y. Соответствие называется взаимно однозначным, если любому х  Х соответствует только один элемент из Y и, наоборот, любому у  Y соответствует только один элемент .

Оказывается, что между множеством вещественных чисел и множеством точек на прямой может быть установлено взаимно однозначное соответствие. Это дает возможность наглядно геометрически изобразить вещественные числа на числовой оси. На прямой выберем точку О начала отсчета, укажем направление отсчета (обычно слева направо, рис. 1.2) и единицу измерения или масштаб.

Рис. 1.2

Эти три действия полностью определяют нам числовую (координатную) ось. На ней вещественные числа изображаются в виде точек. Пусть М — произвольная точка на этой оси. Поставим ей в соответствие число x, равное по величине длине отрезка ОМ, со знаком +, если точка М находится справа от начала отсчета, или со знаком —, если М расположена слева от точки О. Тогда число х называется координатой точки х. Справедливо и обратное утверждение: каждому вещественному числу х соответствует определенная точка на координатной оси, координата которой равна х.

Пусть а и b — два числа, причем а < b. Укажем некоторые наиболее употребительные числовые множества:

1) множество всех чисел, удовлетворяющих неравенству а ≤ х ≤ b, называется отрезком (сегментом) и обозначается [а, b];.

2) множество всех чисел, удовлетворяющих строгому неравенству а < х < b, называется интервалом и обозначается (а,b);

3) множество всех вещественных (действительных) чисел будем обозначать

4) аналогично пп. 1-3 можно определить числовые множества типа (a,b], [а, b), (а, +), (-,b), [а, +) и (-, b].

Все эти множества называются промежутками; промежутки типа 1 и 2 и первые два из п. 4 называются конечными, а числа а и b — их концами; остальные промежутки называются бесконечными. Промежутки первых двух типов из п. 4 называются полуинтервалами. 

Числовым промежуткам соответствуют промежутки на координатной оси. Сегмент [а, b] изображается отрезком М1М2, таким, что точка M1 имеет координату а, точка M2 — координату b. Вся координатная прямая является изображением множества всех вещественных чисел, и потому множество (-, ) называется числовой прямой (осью), а любое число называется точкой этой прямой.

Грани числовых множеств

Будем говорить, что множество Х ограничено сверху (снизу), если существует число d, такое, что для любого х  Х выполняется неравенство х ≤ d (х ≥ d). Число d тогда называется верхней (нижней) гранью множества X. Множества, ограниченные снизу и сверху, называются ограниченными. Любой конечный промежуток ограничен. Интервалы (а, +) и (-, b) представляют собой множества, ограниченные соответственно снизу (сверху), но не ограниченные сверху (снизу). Вся числовая прямая не ограничена ни снизу, ни сверху.

Любое ограниченное сверху (снизу) множество имеет бесконечное число верхних (нижних) граней. Действительно, если число d является верхней гранью множества X, то и любое число d1 > d, согласно определению верхней грани, также будет верхней гранью этого множества. Наименьшая верхняя грань множества X, ограниченного сверху, называется точной верхней гранью этого множества; она обозначается символом supX. Наибольшая нижняя грань ограниченного снизу множества Х называется точной нижней гранью этого множества и обозначается символом infX. Эти символы заимствованы из латинского языка: supremum — наивысший и infimum — наинизший.

Приведем некоторые примеры. Пусть Х = (а, b). В таком cлучае числа а и b являются точными нижней и верхней гранями множества X, т.е. а = inf X, b = sup X. Пусть X = (-, b). Тогда нижних граней (в том числе и точной нижней грани) множество Х не имеет, а число b является его точной верхней гранью: b = sup X.

Известна следующая теорема о существовании точной верхней (нижней) грани числового множества, которую мы приводим ниже без доказательства.

ТЕОРЕМА 1. Если непустое числовое множество ограничено сверху (снизу), то оно имеет точную верхнюю (нижнюю) грань.

 

Абсолютная величина числа

Приведем определение абсолютной величины вещественного числа х (модуля числа):

х,  если х ≥ 0;

|x| =

-х, если х < 0.

Из этого определения следует ряд свойств абсолютной величины, который мы приводим ниже без доказательств.

1. |х| ≥ 0.

2. |х| = | - x|.

3. -|х| ≤ х ≤ |x| .

4. Пусть а — положительное число. Тогда неравенства |х| ≤ а и -а ≤ х ≤ а равносильны.

5. Для любых двух действительных чисел х и у справедливо неравенство

|x + y| ≤ |x| + |y|.

В это свойство можно включить также и неравенство

|х – у| ≤ |х| + |у|.

6. Для любых двух действительных чисел х и y справедливо неравенство 

|х – y| ≥ |х| -|у|.

УПРАЖНЕНИЯ

Определить множества значений x, удовлетворяющих следующим условиям.

|х| < 2. 1.2. x2 ≤ 9. 1.3. х2 > 25. 1.4. |x – 3| < 1. 1.5. (x2 + l) ≤ 17. 1.6 (x2 - 3) ≥ 1. 1.7. х - х2 > 0.

1.8. x2 – 2x + 7 > 0. 1.9. x2 – 2x + 5 < 0.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

  Таким образом, интеграл найден вообще без применения таблиц интегралов.

  Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

 Пример.

  Пример.

 Пример.

  Пример.

 Пример.

  Пример.

 Пример.

  Пример.

 Пример.

В книге изложены необходимые основы математического аппарата и примеры его использования в современных экономических приложениях: математический анализ функций одной и нескольких переменных, элементы линейной алгебры, основы теории вероятностей и математической статистики, элементы линейного программирования и оптимального управления. Именно такой объем знаний актуален сегодня для лиц, получающих образование по экономическим специальностям (в том числе и второе образование), и соответствует требованиям государственных образовательных стандартов по экономическим дисциплинам.

Числовые последовательности представляют собой бесконечные множества чисел. Примерами последовательностей могут служить: последовательность всех членов бесконечной геометрической прогрессии, последовательность приближенных значений  (x1 = 1, х2 = 1,4, х3 = 1,41, ...), последовательность периметров правильных n-угольников, вписанных в данную окружность. Уточним понятие числовой последовательности.

Рассмотрим два примера из экономики на использование числа е.

Функции одной переменной Определение функциональной зависимости Определение Пусть Х и Y — некоторые числовые множества и пусть каждому элементу x  Х по какому-либо закону f поставлен в соответствие один элемент у  Y. Тогда будем говорить, что определена функциональная зависимость у от x по закону у = f(x). При этом x называют независимой переменной (или аргументом), у — зависимой переменной, множество Х — областью определения (существования) функции, множество Y — областью значений (изменения) функции.

Теорема о почленном интегрировании ряда.

 Равномерно сходящийся на отрезке [a,b] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [a,b] , сходится к интегралу от суммы ряда по этому отрезку.

  3) Теорема о почленном дифференцировании ряда.

 Если члены ряда  сходящегося на отрезке [a,b] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

  На основе того, что сумма ряда является некоторой функцией от переменной х, можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.


Основные правила интегрирования