Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Элементы линейного программирования Параметрическое линейное программирование

Высшая математика в экономике

Элементы линейного программирования

Общая постановка задачи

Определение 1. Линейное программирование — наука о методах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений.

Определение 2. Математическое выражение целевой функции и ее ограничений называется математической моделью экономической задачи.

В общем виде математическая модель задачи линейного программирования (ЛП) записывается как

при ограничениях:

где xj — неизвестные; aij, bi, cj — заданные постоянные величины.

Все или некоторые уравнения системы ограничений могут быть записаны в виде неравенств.

Математическая модель в более краткой записи имеет вид

при ограничениях:

Определение 3. Допустимым решением (планом) задачи линейного программирования называется вектор = (x1, x2,..., xп), удовлетворяющий системе ограничений.

Множество допустимых решений образует область допустимых решений (ОДР).

Определение 4. Допустимое решение, при котором целевая функция достигает своего экстремального значения, называется оптимальным решением задачи линейного программирования и обозначается опт.

Базисное допустимое решение (х1, х2,..., xr, 0, …, 0) является опорным решением, где r — ранг системы ограничений.

Виды математических моделей

Математическая модель задачи ЛП может быть канонической и неканонической.

Определение 5. Если все ограничения системы заданы уравнениями и переменные xj неотрицательные, то такая модель задачи называется канонической.

Если хотя бы одно ограничение является неравенством, то модель задачи ЛП является неканонической. Чтобы перейти от неканонической модели к канонической, необходимо в каждое неравенство ввести балансовую переменную xn+i. Если знак неравенства ≤, то балансовая переменная вводится со знаком плюс, если знак неравенства ≥, то — минус. В целевую функцию балансовые переменные не вводятся.

Чтобы составить математическую модель задачи ЛП, необходимо:

— ввести обозначения переменных;

— исходя из цели экономических исследований, составить целевую функцию;

учитывая ограничения в использовании экономических показателей задачи и их количественные закономерности, записать систему ограничений.

Для рассмотрения решения задач линейного программирования дадим некоторые понятия аналитической геометрии в n-мерном пространстве.

Связь натурального и десятичного логарифмов.

  Пусть х = 10у, тогда lnx = ln10y , следовательно lnx = yln10 

 у = , где М = 1/ln10 » 0,43429…- модуль перехода.

Лекция 2. Предел функции.

2.1. Предел функции в точке.

 y f(x)

 

 A + e

 A

 A - e

 0 a - D  a a + D x

 Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

 Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

0 < ïx - aï < D

верно неравенство ïf(x) - Aï< e.

 То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Элементы аналитической геометрии в n-мерном пространстве Дано n-мерное пространство, точки которого имеют координаты (x1, x2, . . . ,xп). Определение. Множество точек n-мерного пространства, координаты которых удовлетворяют уравнению где хотя бы одно из чисел а1, a2, ..., an отлично от нуля, называется гиперплоскостью п-мерного пространства.

Решение систем m линейных неравенств с двумя переменными

Графический метод Постановка задачи Наиболее простым и наглядным методом линейного программирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в неканонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных. С геометрической точки зрения в задаче линейного программирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Разложение функций в степенные ряды.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора).

Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей.

Пример. Разложить в ряд функцию .

 Суть метода алгебраического деления состоит в применении общего правила деления многочленов.

Если применить к той же функции формулу Маклорена

,

то получаем:

 

 

 ……………………………….

 

Итого, получаем:

 Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

 Находим дифференциал функции  и интегрируем его в пределах от 0 до х.


Элементы системы массового обслуживания