Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Атомная энергетика и ядерная физика

Эффект Мёссбауэра

Пусть имеются два одинаковых первоначально покоящихся ядра, одно из которых находится в основном состоянии, другое — в возбужденном с энергией возбуждения Е*. Переходя в основное состояние, возбужденное ядро испускает γ-квант с энергией ħω и импульсом ħω / с, удовлетворяющим законам сохранения:

(16.27)

где К — энергия отдачи ядра. Из этих уравнений следует, что

(16.28)

здесь т — масса ядра.

Согласно первой из формул (16.27) энергия γ-кванта ħω сдвинута относительно энергии Е* ядерного перехода на величину К — энергию отдачи ядра. Поэтому γ-квант сможет поглотиться другим ядром только при условии, что сдвиг

(16.29)

где Г — ширина возбужденного уровня Е*. Электроэнергия, вырабатываемая дочерними АО-электростанциями РАО «ЕЭС России», поставляется подавляющей части потребителей только через сети АО-энерго.

Выясним, насколько выполняется соотношение (16.29). Например, ядро  при переходе из первого возбужденного состояния испускает γ-квант с энергией ħω ≈ 14 кэВ. При этом его энергия испытывает сдвиг на величину

Ширина же Г первого возбужденного уровня, время жизни которого τ ~ 10-7 с, согласно соотношению неопределенностей ∆Е ·∆t ~ ħ равна

(16.30)

Таким образом, сдвиг К не меньше Г, а наоборот, больше на пять порядков, что далеко перекрывает возможность резонансного поглощения. Известно, что атомы наиболее интенсивно поглощают свет частоты, соответствующей переходу из основного состояния атома в ближайшее к нему возбужденное состояние. Это явление называют резонансным поглощением. Другими словами, фотоны, испущенные атомом при переходе из первого возбужденного состояния в основное, без всяких проблем поглощаются такими же атомами, поскольку их частоты практически совпадают. В рассмотренном выше примере для ядра условия далеки от резонансного поглощения.

И тем не менее явление резонансного поглощения γ-лучей было обнаружено Мёссбауэром (1958) . Это оказалось возможным только с ядрами, входящими в состав кристалла. При этом существует вероятность испускания γ-кванта ядром с отдачей, которую воспринимает не ядро, а весь кристалл в целом, не меняя своего внутреннего состояния (т. е. без возбуждения колебаний решетки). Масса кристалла несопоставимо велика по сравнению с массой отдельного ядра, поэтому энергия отдачи кристалла практически равна нулю. В результате частота испущенного γ-кванта не смещается относительно резонансного значения, и этот γ-квант может быть поглощен другим таким же ядром, тоже входящим в состав кристалла.

В этом заключается суть эффекта Мессбауэра: испускание и поглощение γ-квантов без отдачи, т. е. резонансное. Этот эффект удается наблюдать только при очень низких температурах, но иногда и при комнатных температурах (в случае с Fe).

Эффект Мессбауэра наблюдают так. Источник γ-излучения приводят в движение с небольшой

Рис. 16.6.

 

скоростью υ навстречу поглотителю или в обратном направлении. При этом измеряют скорость счета γ-квантов за поглотителем. Если υ ≠ 0, то резонанс нарушается: линии испускания и поглощения сдвигаются относительно друг друга за счет эффекта Доплера. При υ = 0 наблюдается резонансное поглощение γ-квантов, что показано на рис. 16.6.

Благодаря очень малому отношению ширины Г возбужденных ядерных уровней к энергии возбуждения Е* (Г/Е* ~ 10-12 ÷ 10-16) эффект Мессбауэра дает уникальный метод измерения ничтожных изменений энергии, которые не могут быть измерены никаким другим методом.

В частности, с помощью этого эффекта удалось обнаружить в лабораторных условиях гравитационное смещение спектральных линий (уменьшение частоты фотона при удалении его от источника тяготения). Для этого надо было измерить относительное изменение энергии фотона порядка 10-15 на базе около 20 м, что впервые и проделали Паунд

и Ребка (1960).


На главную