Интернет-магазин электроники и бытовой техники

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Китайские косметические средства

Китайская народная медицина

Копии смартфонов

Духи от Dior

Стильные браслеты с уникальным дизайном

Термос Bullet

Часы Hublot механические

Гироскутер SmartWay

Женский Интим-гель

Нужен оригинальный подарок? Закажи

Локальная сеть Подключение кабелей Волоконнооптические кабели Кабели для локальных сетей Адаптеры Ethernet Скорость передачи данных Информационные технологии

Лабораторные работы по курсу Информационные технологии. Технологии защиты информации

Технологии искусственного интеллекта

Термин «искусственный интеллект» – ИИ – (AI – artificial intelligence) был предложен в 1956 г. на семинаре с аналогичным названием в Дартсмутском колледже (США). Семинар был посвящен разработке методов решения логических, а не вычислительных задач. В английском языке данное словосочетание не имеет той слегка фантастической антропоморфной окраски, которую оно приобрело в довольно неудачном русском переводе. Слово intelligence означает «умение рассуждать разумно», а вовсе не «интеллект», для которого есть термин intellect. Вскоре, после признания искусственного интеллекта отдельной областью науки, произошло разделение его на два направления: «нейрокибернетика» и «кибернетика черного ящика». Эти направления развиваются практически независимо, существенно различаясь как в методологии, так и в технологии. И только в настоящее время стали заметны тенденции к объединению этих частей вновь в единое целое.

Зарождение нейрокибернетики

Основную идею этого направления можно сформулировать следующим образом:

Единственный объект, способный мыслить – это человеческий мозг. Поэтому любое «мыслящее» устройство должно каким-то образом воспроизводить его структуру.

Таким образом, нейрокибернетика ориентирована на программно-аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основой человеческого мозга является большое количество (до 1021) связанных между собой и взаимодействующих нервных клеток – нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями, или нейросетями.

Первые нейросети были созданы Розенблаттом и Мак-Каллоком в 1956–1965 гг. Это были попытки создать системы, моделирующие человеческий глаз и его взаимодействие с мозгом. Устройство, созданное ими тогда, получило название пер-септрона (perceptron). Оно умело различать буквы алфавита, но было чувствительно к их написанию. Постепенно в 70–80 годах количество работ по этому направлению искусственного интеллекта стало снижаться. Слишком неутешительны были первые результаты. Авторы объясняли неудачи малой памятью и низким быстродействием существующих в то время компьютеров.

Однако в 1980-х в Японии в рамках проекта «ЭВМ V поколения» был создан первый нейрокомпьютер, или компьютер VI поколения. К этому времени ограничения по памяти и быстродействию были практически сняты. Появились транспьютеры – параллельные компьютеры с большим количеством процессоров. Транспьютерная технология – это только один из десятка новых подходов к аппаратной реализации нейросетей, которые моделируют иерархическую структуру мозга человека. Основная область применения нейрокомпьютеров сегодня – это задачи распознавания образов, например, идентификация объектов по результатам аэрофотосъемки из космоса. Можно выделить три подхода к созданию нейросетей:

Аппаратный – создание специальных компьютеров, нейрочипов, плат расширения, наборов микросхем, реализующих все необходимые алгоритмы.

Программный – создание программ и инструментариев, рассчитанных на высокопроизводительные компьютеры. Сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры.

Гибридный – комбинация первых двух. Часть вычислений выполняют специальные платы расширения (сопроцессоры), часть – программные средства.

От кибернетики «черного ящика» к ИИ

В основу этого подхода был положен принцип, противоположный нейрокибернетике.

Не имеет значения, кик устроено «мыслящее» устройство. Главное, чтобы на заданные входные воздействия оно реагировало так же, как человеческий мозг. Сторонники этого направления мотивировали свой подход тем, что человек не должен слепо следовать природе в своих научных и технологических поисках. Так, например, очевиден успех колеса, которого не существует в природе, или самолета, не машущего крыльями, подражая птице. К тому же пограничные науки о человеке не смогли внести существенного теоретического вклада, объясняющего хотя бы приблизительно, как протекают интеллектуальные процессы у человека, как устроена память и как человек познает окружающий мир.

Это направление искусственного интеллекта было ориентировано на поиски алгоритмов решения интеллектуальных задач на существующих моделях компьютеров. Существенный вклад в становление новой науки внесли ее «пионеры»: Маккарти (автор первого языка программирования для задач ИИ – ЛИСПа), Минский (автор идеи фрейма и фреймовой модели представления знаний), Ныюэлл, Саймон, Шоу, Хант и др.

В 1956–1963 гг. велись интенсивные поиски моделей и алгоритмов человеческого мышления и разработка первых программ на их основе. Представители существующих гуманитарных наук – философы, психологи, лингвисты – ни тогда, ни сейчас не в состоянии были предложить таких алгоритмов. Тогда кибернетики начали создавать собственные модели. Так последовательно были созданы и опробованы различные подходы.

1. В конце 50-х годов родилась модель лабиринтного поиска. Этот подход представляет задачу как некоторое пространство состояний в форме графа, и в этом графе проводится поиск оптимального пути от входных данных к результирующим. Была проделана большая работа по разработке этой модели, но для решения практических задач эта идея не нашла широкого применения. В первых учебниках по искусственному интеллекту [Хант, 1986; Эндрю, 1985] описаны эти программы – они играют в игру «15», собирают «Ханойскую башню», играют в шашки и шахматы.

Начала 60-х – это эпоха эвристического программирования. Эвристика – правило, теоретически не обocнованное, которое позволяет сократить количество переборов в пространстве поиска. Эвристическое программирование – разработка стратеги и действий на основе известных, заранее заданных эвристик [Александров, 1975].

В 1963–1970 гг. к решению задач стали подключать методы математической логики. Робинсон разработал метод резолюций, который позволяет автоматически доказывать теоремы при наличии набора исходных аксиом. Примерно в это же время выдающийся отечественный математик Ю.С. Маслов предложил так называемый обратный вывод, впоследствии названный его именем, решающий аналогичную задачу другим способом [Маслов, 1983]. На основе метода резолюций француз Алъбер Колъмероэ в 1973 г. создает язык логического программирования Пролог. Большой резонанс имела программа «Логик-теоретик», созданная Ныюэлом, Саймоном и Шоу, которая доказывала школьные теоремы. Однако большинство реальных задач не сводится к набору аксиом, и человек, решая производственные задачи, не использует классическую логику, поэтому логические модели при всех своих преимуществах имеют существенные ограничения по классам решаемых задач.

4. История искусственного интеллекта полна драматических событий, одним из которых стал в 1973 г. так называемый «доклад Лайтхилла», который был подготовлен в Великобритании по заказу Британского совета научных исследований. Известный математик Д. Лайтхилл, никак с ИИ профессионально не связанный, подготовил обзор состояния дел в области ИИ. В докладе были признаны определенные достижения в области ИИ, однако уровень их определялся как разочаровывающий, и общая оценка была отрицательная с позиций практической значимости. Этот отчет отбросил европейских исследователей примерно на 5 лет назад, так как финансирование ИИ существенно сократилось.

5. Примерно в это же время существенный прорыв в развитии практических приложений искусственного интеллекта произошел в США, когда к середине 1970-х годов на смену поискам универсального алгоритма мышления пришла идея моделировать конкретные знания специалистов-экспертов. В США появились первые коммерческие системы, основанные на знаниях, или экспертные системы (ЭС). Стал применяться новый подход к решению задач искусственного интеллекта – представление знаний. Созданы MYCIN и DENDRAL [Shortliffe, 1976; Buchanan. Feigenbaum, 1978], ставшие уже классическими, две первые экспертные системы для медицины и химии. Существенный финансовый вклад вносит Пентагон, предлагая базировать новую программу министерства обороны США (Strategic Computer Initiative – SCI) на принципах ИИ. Уже вдогонку упущенных возможностей в начале 80-х объявлена глобальная программа развития новых технологий ESPRIT (Европейский Союз), в которую включена проблематика искусственного интеллекта.

6. В ответ на успехи США в конце 70-х в гонку включается Япония, объявив о начале проекта машин V поколения, основанных на знаниях. Проект был рассчитан на 10 лет и объединял лучших молодых специалистов (в возрасте до 35 лет) крупнейших японских компьютерных корпораций. Для этих специалистов был создан специально новый институт ICOT, и они получили полную свободу действий, правда, без права публикации предварительных результатов. В результате они создали достаточно громоздкий и дорогой символьный процессор, программно реализующий ПРОЛОГоподобный язык, не получивший широкого признания. Однако положительный эффект этого проекта был очевиден. В Японии появилась значительная группа высококвалифицированных специалистов в области ИИ, которая добилась существенных результатов в различных прикладных задачах. К середине 90-х японская ассоциация ИИ насчитывает 40 тыс. человек.

Начиная с середины 1980-х годов, повсеместно происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам. Издаются десятки научных журналов, ежегодно собираются международные и национальные конференции по различным направлениям ИИ. Искусственный интеллект становится одной из наиболее перспективных и престижных областей информатики (computer science).

История искусственного интеллекта в России

В 1954 г. в МГУ начал свою работу семинар «Автоматы и мышление» под руководством академика А.А. Ляпунова (1911–1973), одного из основателей российской кибернетики. В этом семинаре принимали участие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились два основных направления – нейрокибернетики и кибернетики «черного ящика».

В 1954–1964 гг. создаются отдельные программы и проводятся исследования в области поиска решения логических задач. В Ленинграде (ЛОМИ – Ленинградское отделение математического института им. Стеклова) создается программа АЛПЕВ ЛОМИ, автоматически доказывающая теоремы. Она основана на оригинальном обратном выводе Маслова, аналогичном методу резолюций Робинсона. Среди наиболее значимых результатов, полученных отечественными учеными в 60-е годы, следует отметить алгоритм «Kopa» М.М. Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов. Большой вклад в становление российской школы ИИ внесли выдающиеся ученые М.Л. Цетлин, В.Н. Пушкин, М.А. Гаврилов, чьи ученики и явились пионерами этой науки в России (например, знаменитая Гавриловская школа).

В 1965–1980 гг. происходит рождение нового направления – ситуационного управления (соответствует представлению знаний, в западной терминологии). Основателем этой научной школы стал проф. Д.А. Поспелов. Были разработаны специальные модели представления ситуаций – представления знаний [Поспелов, 1986]. В ИПМ AН СССР был создан язык символьной обработки данных РЕФАЛ [Тургин, 1968].

При том, что отношение к новым наукам в советской России всегда было настороженное, наука с таким «вызывающим» названием тоже не избежала этой участи и была встречена в Академии наук в штыки [Поспелов, 1997]. К счастью, даже среди членов Академии наук СССР нашлись люди, не испугавшиеся столь необычного словосочетания в качестве названия научного направления. Двое из них сыграли огромную роль в борьбе за признание ИИ в нашей стране. Это были академики А. И. Берг и Г. С. Поспелов.

Только в 1974 году при Комитете по системному анализу при президиуме АН СССР был создан Научный совет но проблеме «Искусственный интеллект», его возглавил Г.С. Поспелов, его заместителями были избраны Д.А. Поспелов и Л.И. Микулич. В состав совета входили на разных этапах М.Г. Гаазе-Рапопорт, Ю.И. Журавлев, Л.Т. Кузин, А.С. Нариньяни, Д.Е. Охоцимский, А.И. Половинкин, О.К. Тихомиров, В.В. Чавчанидзе.

По инициативе Совета было организовано пять комплексных научных проектов, которые были возглавлены ведущими специалистами в данной области. Проекты объединяли исследования в различных коллективах страны: «Диалог» (работы по пониманию естественного языка, руководители А.П. Ершов, А.С. Нариньяни), «Ситуация» (ситуационное управление, Д.А. Поспелов), «Банк» (банки данных, Л.Т. Кузин), «Конструктор» (поисковое конструирование А.И. Половинкин), «Интеллект робота» (Д.Е. Охоцимский).

В 1980–1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300).

В 1988 г. создается АИИ – Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президентом Ассоциации единогласно избирается Д.А. Поспелов, выдающийся ученый, чей вклад в развитие ИИ в России трудно переоценить. Крупнейшие центры – в Москве, Петербурге, Переславле-Залесском, Новосибирске. В научный совет Ассоциации входят ведущие исследователи в области ИИ – В.П. Гладун, В.И. Городецкий, Г.С. Осипов, Э.В. Попов, В.Л. Стефанюк, В.Ф. Хорошевский, В.К. Финн, Г.С. Цейтин, А.С. Эрлих и другие ученые. В рамках Ассоциации проводится большое количество исследований, организуются школы для молодых специалистов, семинары, симпозиумы, раз в два года собираются объединенные конференции, издается научный журнал.

Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 80-х гг., на прикладных работах начинает сказываться постепенное отставание в технологии. На данный момент отставание в области разработки промышленных интеллектуальных систем составляет порядка 3–5 лет.

Основные направления исследований в области искусственного интеллекта

Синтезируя десятки определений ИИ из различных источников, в качестве рабочего определения можно предложить следующее.

Искусственный интеллект – это одно из направлений информатики, целью которого является разработка аппаратно-программных средств, позволяющих пользователю-непрограммисту ставить и решать свои, традиционно считающиеся интеллектуальными задачи, общаясь с ЭВМ на ограниченном подмножестве естественного языка.

Среди множества направлений искусственного интеллекта есть несколько ведущих, которые в настоящее время вызывают наибольший интерес у исследователей и практиков. Опишем их чуть подробнее.

1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based systems)

Это основное направление в области разработки систем искусственного интеллекта. Оно связано с разработкой моделей представления знаний, созданием баз знаний, образующих ядро экспертных систем. В последнее время включает в себя модели и методы извлечения и структурирования знаний и сливается с инженерией знаний. 2. Программное обеспечение систем ИИ (software engineering for Al)

В рамках этого направления разрабатываются специальные языки для решения интеллектуальных задач, в которых традиционно упор делается на преобладание логической и символьной обработки над вычислительными процедурами. Эти языки ориентированы на символьную обработку информации – LISP, PROLOG, SMALL-TALK, РЕФАЛ и др. Помимо этого создаются пакеты прикладных программ, ориентированные на промышленную разработку интеллектуальных систем, или программные инструментарии искусственного интеллекта, например KEE, ART, G2 [Хейес-Рот и др., 1987; Попов, Фоминых, Кисель, Шапот, 1996]. Достаточно популярно также создание так называемых пустых экспертных систем или «оболочек» – KAPPA, EXSYS, Ml, ЭКО и др., базы знаний которых можно наполнять конкретными знаниями, создавая различные прикладные системы.

3. Разработка естественно-языковых интерфейсов и машинный перевод (natural language processing)

Начиная с 50-х годов, одной из популярных тем исследований в области ИИ является компьютерная лингвистика и, в частности, машинный перевод (МП). Идея машинного перевода оказалась совсем не так проста, как казалось первым исследователям и разработчикам.

Уже первая программа в области естественно-языковых (ЕЯ) интерфейсов – переводчик с английского на русский язык – продемонстрировала неэффективность первоначального подхода, основанного на пословном переводе. Однако еще долго разработчики пытались создать программы на основе морфологического анализа. Неплодотворность такого подхода связана с очевидным фактом: человек может перевести текст только на основе понимания его смысла и в контексте предшествующей информации, или контекста. Иначе появляются переводы в стиле «Моя дорогая Маша – my expensive Masha». В дальнейшем системы МП усложнялись, и в настоящее время используется несколько более сложных моделей:

• применение так называемых «языков-посредников» или языков смысла, в результате происходит дополнительная трансляция «исходный язык оригинала – язык смысла – язык перевода»;

• ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных текстовых репозиториях или базах данных;

•  структурный подход, включающий последовательный анализ и синтез естественно-языковых сообщений.

Традиционно такой подход предполагает наличие нескольких фаз анализа:

1) Морфологический анализ – анализ слов в тексте.

2) Синтаксический анализ – разбор состава предложений и грамматических связей между словами.

3)  Семантический анализ – анализ смысла составных частей каждого предложения на основе некоторой предметно-ориентированной базы знаний.

4) Прагматический анализ – анализ смысла предложений в реальном контексте на основе собственной базы знаний.

4. Интеллектуальные роботы (robotics)

Идея создания роботов далеко не нова. Само слово «робот» появилось в 20-х годах, как производное от чешского «робота» – тяжелой грязной работы. Его автор – чешский писатель Карел Чапек, описавший роботов в своем рассказе «Р.У.Р.».

Роботы – это электротехнические устройства, предназначенные для автоматизации человеческого труда.

Можно условно выделить несколько поколений в истории создания и развития робототехники:

I поколение. Роботы с жесткой схемой управления. Практически все современные промышленные роботы принадлежат к первому поколению. Фактически это программируемые манипуляторы.

II поколение. Адаптивные роботы с сенсорными устройствами. Есть образцы таких роботов, но в промышленности они пока используются мало.

III поколение. Самоорганизующиеся или интеллектуальные роботы. Это – конечная цель развития робототехники. Основные нерешенные проблемы при создании интеллектуальных роботов – проблема машинного зрения и адекватного хранения и обработки трехмерной визуальной информации.

В настоящее время в мире изготавливается более 60 000 роботов в год. Фактически робототехника сегодня – это инженерная наука, не отвергающая технологий ИИ, но не готовая пока к их внедрению в силу различных причин.

5. Обучение и самообучение (machine learning)

Активно развивающаяся область искусственного интеллекта. Включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний на основе анализа и обобщения данных [Гаек, Гавранек, 1983; Гладун, 1994; Финн, 1991]. Включает обучение по примерам (или индуктивное), а также традиционные подходы из теории распознавания образов.

В последние годы к этому направлению тесно примыкают стремительно развивающиеся системы data mining – анализа данных и knowledge discovery – поиска закономерностей в базах данных.

6. Распознавание образов (pattern recognition)

Традиционно – одно из направлений искусственного интеллекта, берущее начало у самых его истоков, но в настоящее время выделившееся в самостоятельную науку. Ее основной подход – описание классов объектов через определенные значения значимых признаков. Каждому объекту ставится в соответствие матрица признаков, по которой происходит его распознавание. Процедура распознавания использует чаще всего специальные математические процедуры и функции, разделяющие объекты на классы. Это направление близко к машинному обучению и тесно связано с нейрокибернетикой [Справочник по ИИ, 1990].

7. Новые архитектуры компьютеров (new hardware platforms and architectures)

Самые современные процессоры сегодня основаны на традиционной последовательной архитектуре фон Неймана, используемой еще в компьютерах первых поколений. Эта архитектура крайне неэффективна для символьной обработки. Поэтому усилия многих научных коллективов и фирм уже десятки лет нацелены на разработку аппаратных архитектур, предназначенных для обработки символьных и логических данных. Создаются Пролог- и Лисп-машины, компьютеры V и VI поколений. Последние разработки посвящены компьютерам баз данных, параллельным и векторным компьютерам [Амамия, Танака, 1993].

И хотя удачные промышленные решения существуют, высокая стоимость, недостаточное программное оснащение и аппаратная несовместимость с традиционными компьютерами существенно тормозят широкое использование новых архитектур.

8. Игры и машинное творчество

Это, ставшее скорее историческим, направление связано с тем, что на заре исследований ИИ традиционно включал в себя игровые интеллектуальные задачи – шахматы, шашки, го. В основе первых программ лежит один из ранних подходов – лабиринтная модель мышления плюс эвристики. Сейчас это скорее коммерческое направление, так как в научном плане эти идеи считаются тупиковыми.

Кроме того, это направление охватывает сочинение компьютером музыки [Зарипов, 1983], стихов, сказок [Справочник по ИИ, 1986] и даже афоризмов [Любич, 1998]. Основным методом подобного «творчества» является метод пермутаций (перестановок) плюс использование некоторых баз знаний и данных, содержащих результаты исследований по структурам текстов, рифм, сценариям и т. п.

9. Другие направления

ИИ – междисциплинарная наука, которая, как мощная река по дороге к морю, вбирает в себя ручейки и речки смежных наук. Выше перечислены лишь те направления, которые прямо или косвенно связаны с основной тематикой – инженерией знаний. Стоит лишь взглянуть на основные рубрикаторы конференций по ИИ, чтобы понять, насколько широко простирается область исследований по ИИ:

генетические алгоритмы;

когнитивное моделирование;

интеллектуальные интерфейсы; 

распознавание и синтез речи;

дедуктивные модели;

многоагентные системы;

онтологии;

менеджмент знаний;

логический вывод;

формальные модели;

мягкие вычисления и многое другое.

Конечно, невозможно в рамках одного параграфа рассмотреть все многообразие подходов и идей в области ИИ.

CASE–технологии Тенденции развития современных информационных технологий приводят к постоянному возрастанию сложности информационных систем (ИС), создаваемых в различных областях экономики.

Практика функционирования информационных технологий показывает, что в настоящее время существует большое количество угроз безопасности информации. К основным угрозам безопасности информации и нормального функционирования информационной технологии относятся большое количество различных угроз, которые могут иметь локальный характер или интегрированный, т. е. совмещаться, комбинироваться или совпадать по своим действиям с другими видами угроз безопасности.

Реализация угроз безопасности информации в информационных технологиях приводит к различным видам прямых или косвенных потерь

Система защиты данных в информационных технологиях На современном этапе существуют следующие предпосылки сложившейся кризисной ситуации обеспечения безопасности информационных технологий:


На главную