Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Тройные интегралы в сферических координатах

Сферическими координатами точки M(x,y,z) называются три числа − ρ, φ, θ , где

ρ − длина радиуса-вектора точки M; φ − угол, образованный проекцией радиуса-вектора на плоскость Oxy и осью Ox; θ − угол отклонения радиуса-вектора от положительного направления оси Oz (рисунок 1).
Рис.1
Обратите внимание, что определения ρ, φ в сферических и цилиндрических координатах отличаются друг от друга. Сферические координаты точки связаны с ее декартовыми координатами соотношениями Якобиан перехода от декартовых координат к сферическим имеет вид: Раскладывая определитель по второму столбцу, получаем Соответственно, абсолютное значение якобиана равно Следовательно, формула замены переменных при преобразовании декартовых координат в сферические имеет вид: Тройной интеграл удобнее вычислять в сферических координатах, когда область интегрирования U представляет собой шар (или некоторую его часть) и/или когда подынтегральное выражение имеет вид f (x2 + y2 + z2). Иногда выгодно использовать т.н. обощенные сферические координаты, связанные с декартовыми формулами В этом случае якобиан равен

На главную