Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Повторные интегралы

Области интегрирования I и II типа Двойные интегралы вычисляются, как правило, с помощью повторных интегралов. Однако переход от двойных к повторным интегралам возможен не для произвольной области интегрирования R, а для областей определенного типа. Введем понятия областей интегрирования типа I и II. Определение 1. Говорят, что область R на плоскости относится к типу I или является элементарной относительно оси Oy, если она лежит между графиками двух непрерывных функций, зависящих от x (рисунок 1), и описывается множеством: Определение 2. Говорят, что область R на плоскости относится к типу II или является элементарной относительно оси Ox, если она лежит между графиками двух непрерывных функций, зависящих от y (рисунок 2), и описывается множеством:
Рис.1
Рис.2

Связь между двойными и повторными интегралами Пусть f (x,y) является непрерывной функцией в области R типа I: Тогда двойной интеграл от функции f (x,y) в данной области выражается через повторный интеграл в виде Для области интегрирования типа II существует аналогичная формула. Если f (x,y) является непрерывной функцией в области R типа II: то справедливо соотношение Приведенные формулы (в англоязычной литературе они известны как теорема Фубини) позволяют вычислять двойные интегралы через повторные. В повторных интегралах сначала находится внутренний интеграл, а затем - внешний.

Определение: Пусть есть функция f(x,y,z), которая задана на множестве D(трёхмерное).

Если D разделим на сумму, то D=

 

 

 

Составим сумму Дарбу

Если , If все Дарбу стремятся к одному и тому же числу I , то I-

  -тройной интеграл (x,y,z) по области D

  

  Замечание: Исходя из определения, если функция f 1, то тройной инт. По обл. D

 

 

На главную