Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Физические приложения криволинейных интегралов

Пример Тело массой m брошено под углом к горизонту α с начальной скоростью v0 (рисунок 6). Вычислить работу силы притяжения за время движения тела до момента соударения с землей.

Решение. Запишем закон движения тела в параметрической форме. При соударении с землей y = 0, так что время полета тела равно Силу притяжения запишем в виде . Тогда работа за время перемещения тела равна Полученный результат объясняется тем, что гравитационное поле Земли является потенциальным, поскольку выполняется равенство Найдем потенциал этого поля. В общем виде он записывается как Полагая , находим Таким образом, потенциал гравитационного поля равен где C − константа, которую можно положить равной 0. В результате получаем потенциал в виде Отсюда видно, что при перемещении тела из начальной точки O(0,0) до конечной точки A(L,0) работа равна
Рис.6
Рис.7

 Теорема-свойство

 

 

Существуют 3 частных вида поверхностных интегралов 2-го рода

  A(x,y,z)=(Rx,Ry,Rz)

На главную