Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Физические приложения тройных интегралов

Пример Пусть планета имеет радиус R, а ее плотность выражается зависимостью

Вычислить массу планеты. Решение. Расссмотрим подробнее закон изменения плотности. Если r = R, то где γ0 − некоторая поверхностная плотность планеты. Если r → 0, то γ → ∞ (рисунок 6).

Рис.6
Массу планеты вычислим с помощью тройного интеграла по формуле: Переходя к сферическим координатам, получаем Поскольку объем планеты равен 4/3πR3, то ответ можно записать и в такой форме:

Как видно, масса планеты на 25% больше по сравнению со случаем, когда плотность распределена однородно.


На главную