Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Поверхностные интегралы первого рода

Пример Вычислить поверхностный интеграл , где S − часть плоскости , лежащая в первом октанте (x ≥ 0, y ≥ 0, z ≥ 0).

Решение. Запишем уравнение плоскости в виде Найдем частные производные Применяя формулу поверхностный интеграл можно выразить через двойной интеграл: Область интегрирования D представляет собой треугольник, показанный выше на рисунке 2. Вычисляем окончательно заданный интеграл:

  Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Рассмотрим теперь несколько примеров, связанных с вычислением двойных интегралов.

Примеры. 1) Найдём двойной интеграл от функции

по прямоугольной области D

 

Геометрически I выражает объём четырёхугольной призмы

(рис.12), основанием которой служит прямоугольник D, усечённый плоскостью .

Возьмём повторный интеграл сначала по y, затем по x:

То же самое получим, интегрируя сначала по x, а затем по y:


На главную