Электрические цепи переменного тока Явление резонанса векторная диаграмма Электpостатика Закон Кулона Потенциал Диэлектpики Пpоводники Теоpема Гаусса Электpическая емкость Физика атомного ядра Электромагнетизм Волновая оптика Математика Задачи Векторная алгебра Производная

Тройные интегралы в декартовых координатах

Пример Вычислить тройной интеграл где область U (рисунок 5) ограничена поверхностями

Рис.5
Рис.6
Решение. Проекция области U на плоскость Оxy имеет вид, показанный на рисунке 6. Учитывая это, найдем соответствующие повторные интегралы:

 Пример.

 

 Пример.

  Рассмотрим теперь методы интегрирования простейших дробей IV типа.

Сначала рассмотрим частный случай при М = 0, N = 1.

Тогда интеграл вида  можно путем выделения в знаменателе полного квадрата представить в виде . Сделаем следующее преобразование:

.

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

Для исходного интеграла получаем:

Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл .


На главную